Биссектрисы углов a и b при боковой стороне ab трапеции abcd пересекаются в точке f. биссектрисы углов c и d при боковой стороне cd пересекаются в точке g. найдите fg, если средняя линия трапеции равна 21, боковые стороны 13 и 15
Все очень просто Обе точки пересечения биссектрис лежат на одинаковом расстоянии от оснований, это - центры окружностей, касающихся оснований. Одна касается левого ребра 13, другая - правого 15. Если точки касаний делят верхнее основание на отрезки x, у, z, то сразу ясно, что z - искомое расстояние. И есть 3 соотношения. z+x+y = b z+(13-x)+(15-y) = a; (a + b)/2 = 21 Складываем и делим на 2. z = 7