Постройки сначала равнобедренный треугольник, а затем постройки серединный перпендикуляр к отрезка AC. Точка пересечения серединного перпендикуляра с отрезок АС и будет точка пересечения медиана с АС.
Проведи прямую, проходящую через точки В и точку пересечения В1 серединного перпендикуляра со стороной АС. Получило медиану.
Чтобы построить серединный перпендикуляр к отрезку АС, надо построить две окружности с радиусом АС в центрах в точках А и С. Затем просто соединить точки пересечения двух окружностей.
В начале докажем равенство треугольников AMC и AMD. AC = AD ( по условию ), сторона AM - общая, а угол CMA = углу DMA = 90°( т.к. BA - перпендикуляр к CD ) => треугольники равны по 1 признаку, из чего следует, что угол ACB = углу ADB.
Рассмотрим треугольники CMB и BMD. Из равенства треугольников AMC и AMD следует, что CM = MD. Сторона BM - общая. Угол BMC = углу BMD = 90° => треугольники BMC и BMD равны по 1 признаку => BC = BD, ч.т.д.
Объяснение:
Постройки сначала равнобедренный треугольник, а затем постройки серединный перпендикуляр к отрезка AC. Точка пересечения серединного перпендикуляра с отрезок АС и будет точка пересечения медиана с АС.
Проведи прямую, проходящую через точки В и точку пересечения В1 серединного перпендикуляра со стороной АС. Получило медиану.
Чтобы построить серединный перпендикуляр к отрезку АС, надо построить две окружности с радиусом АС в центрах в точках А и С. Затем просто соединить точки пересечения двух окружностей.
Дано:
AC = AD
BA перпендикуляр. к CD
----------------------
Док-ть:
BC = BD
угол ACB = углу ADB
В начале докажем равенство треугольников AMC и AMD. AC = AD ( по условию ), сторона AM - общая, а угол CMA = углу DMA = 90°( т.к. BA - перпендикуляр к CD ) => треугольники равны по 1 признаку, из чего следует, что угол ACB = углу ADB.
Рассмотрим треугольники CMB и BMD. Из равенства треугольников AMC и AMD следует, что CM = MD. Сторона BM - общая. Угол BMC = углу BMD = 90° => треугольники BMC и BMD равны по 1 признаку => BC = BD, ч.т.д.