Давайте сначала рассмотрим две точки и посмотрим, при каких условиях прямая будет равноудалена от них (первый рисунок). Я утверждаю, что так будет, если или она параллельна отрезку, соединяющему эти точки, или проходит через середину этого отрезка.
Доказательство несложно: если прямая параллельна отрезку, то расстояние от неё до любой точки отрезка одинаково; в противном случае она пересекает прямую, содержащую отрезок. Но вне отрезка она пересечь не может - см. нижний рисунок, отрезки AHa, BHb не равны, поэтому она пересекает в некоторой точке C, принадлежащей отрезку (смотрим на верхний рисунок). Опустим из точек перпендикуляры на прямую. Прямая равноудалена от точек, поэтому AHa = BHb. Кроме того, равны углы ACHa и BCHb - вертикальные. Отсюда прямоугольные треугольники ACHa и BCHb равны по катету и острому углу, и AC = CB.
Теперь возвращаемся к задаче. Будем думать, что нам даны вершины треугольника ABC. Искомая прямая не может быть параллельна более, чем одной стороне треугольника, две стороны она точно пересекает в середине. Значит, это средняя линия треугольника. Легко проверить, что средняя линия удовлетворяет условию.
ответ. (Второй рисунок) Искомая прямая - средняя линия треугольника, образованного данными точками. Задача имеет три решения - по числу средних линий.
"298. Периметр треугольника равен 80 см. Стороны треугольника, образованного средними линиями данного треугольника, относятся как 4:9:7. Найдите стороны данного треугольника."
***
Пусть одна сторона треугольника, образованного средними линиями трапеции равна 4х. Тогда вторая будет 9х, а третья - 7х. Периметр этого треугольника равен 80 см.
Р=4х+9х+7х=80;
20х=80;
х=4;
4x=4*4=16 см;
9х=9*4=36 см;
7х=7*4=28 см;
Проверим:
Р=16+36+28= 80 см. Всё верно!
Средние линии треугольника равны половине основания. Значит основания равны удвоенным средним линиям.
Одна сторона равна 2*16=32 см;
Вторая сторона равна 2*36=72 см;
Третья сторона равна 2*28=56 см.
***
"292.Стороны треугольника равны 12 дм, 16 дм и 18 дм. Найдите периметр треугольника, сторонами которого являются средние линии этого треугольника."
***
АВС - треугольник. MNP - треугольник, образованный средними линиями треугольника. Каждая из них равна половине стороны ей параллельной.
Доказательство несложно: если прямая параллельна отрезку, то расстояние от неё до любой точки отрезка одинаково; в противном случае она пересекает прямую, содержащую отрезок. Но вне отрезка она пересечь не может - см. нижний рисунок, отрезки AHa, BHb не равны, поэтому она пересекает в некоторой точке C, принадлежащей отрезку (смотрим на верхний рисунок).
Опустим из точек перпендикуляры на прямую. Прямая равноудалена от точек, поэтому AHa = BHb. Кроме того, равны углы ACHa и BCHb - вертикальные. Отсюда прямоугольные треугольники ACHa и BCHb равны по катету и острому углу, и AC = CB.
Теперь возвращаемся к задаче. Будем думать, что нам даны вершины треугольника ABC. Искомая прямая не может быть параллельна более, чем одной стороне треугольника, две стороны она точно пересекает в середине. Значит, это средняя линия треугольника. Легко проверить, что средняя линия удовлетворяет условию.
ответ. (Второй рисунок) Искомая прямая - средняя линия треугольника, образованного данными точками. Задача имеет три решения - по числу средних линий.
ответ: 298. 32 см, 72см, 56см.
292. 23 дм.
Объяснение:
"298. Периметр треугольника равен 80 см. Стороны треугольника, образованного средними линиями данного треугольника, относятся как 4:9:7. Найдите стороны данного треугольника."
***
Пусть одна сторона треугольника, образованного средними линиями трапеции равна 4х. Тогда вторая будет 9х, а третья - 7х. Периметр этого треугольника равен 80 см.
Р=4х+9х+7х=80;
20х=80;
х=4;
4x=4*4=16 см;
9х=9*4=36 см;
7х=7*4=28 см;
Проверим:
Р=16+36+28= 80 см. Всё верно!
Средние линии треугольника равны половине основания. Значит основания равны удвоенным средним линиям.
Одна сторона равна 2*16=32 см;
Вторая сторона равна 2*36=72 см;
Третья сторона равна 2*28=56 см.
***
"292.Стороны треугольника равны 12 дм, 16 дм и 18 дм. Найдите периметр треугольника, сторонами которого являются средние линии этого треугольника."
***
АВС - треугольник. MNP - треугольник, образованный средними линиями треугольника. Каждая из них равна половине стороны ей параллельной.
MN=BC/2=16/2=8 дм.
NP=AC/2=18/2=9 дм.
MP=AB/2 =12/2=6 дм.
Р MNP=8+9+6= 23 дм.