Бассейн, имеющий форму прямоугольного параллелепипеда, имеет длину 6 м, ширину 2 м и высоту 1 м. Бассейн наполнен водой до его высоты. Найдите объём воды, налитой в бассейн.
Там достаточно легко. Смотри если там есть пропорция (:) то это значит что будет x-коэфициен пропорцийности. (Не знаю как будет на русском) значит например AB- 4x
BC-5x (возьмём только две стороны; больше не надо)
Далее записуем формулу пириметра P=2(a+b)
P=2(AB+BC)
Дольше подставляешь, то что известно.
Выходит 10,8= 2*(4х+5х) и решаешь
10,8=18х
Неизвестные в левую часть, известные в правую.
18х=10,8
Потом находим х. Это умножение. Значит надо добуток (хз как в русском) поделить на известный множник.
х=10,8:18
х=0,6
теперь просто если это параллелограм то АВ=СД= 2,4 см
ВС=АД= 3 см
Вроде всё. Изменяюсь за ошибки. Пыталась объяснить своими словами. Если вы знаете хорошо английский, то можете с моими вопросами у меня на странички. А то я в нем не сильна
Если вершины треугольника заданы, как точки в прямоугольной декартовой системе координат: A1(x1,y1), A2(x2,y2), A3(x3,y3), то площадь такого треугольника можно вычислить по формуле определителя второго порядка:
ответ:AB= 2,4 см
ВС=3 см
СД=2,4 см
АД=3см
Объяснение:
Там достаточно легко. Смотри если там есть пропорция (:) то это значит что будет x-коэфициен пропорцийности. (Не знаю как будет на русском) значит например AB- 4x
BC-5x (возьмём только две стороны; больше не надо)
Далее записуем формулу пириметра P=2(a+b)
P=2(AB+BC)
Дольше подставляешь, то что известно.
Выходит 10,8= 2*(4х+5х) и решаешь
10,8=18х
Неизвестные в левую часть, известные в правую.
18х=10,8
Потом находим х. Это умножение. Значит надо добуток (хз как в русском) поделить на известный множник.
х=10,8:18
х=0,6
теперь просто если это параллелограм то АВ=СД= 2,4 см
ВС=АД= 3 см
Вроде всё. Изменяюсь за ошибки. Пыталась объяснить своими словами. Если вы знаете хорошо английский, то можете с моими вопросами у меня на странички. А то я в нем не сильна
Даны вершины треугольника A(−2,1), B(3,3), С(1,0). Найти:
а) длина стороны AB = √((3-(-2))² + (3-1)² = √(25 + 4) = √29.
б) уравнение медианы BM.
Находим координаты точки М как середины стороны АС.
М(((-2+1)/2; (1+3)/2) = (-0,5; 2).
Вектор ВМ = ((-0,5-3); (2-3)) = (-3,5; -1).
Уравнение ВМ: (х – 3)/(-3,5) = (у – 3)/(-1). Это в каноническом виде.
Оно же в общем виде 7у – 2х – 15 = 0.
И в виде уравнения с угловым коэффициентом у = (2/7)х + (15/7).
в) cos угла BCA.
Вектор СВ = ((1-3); (0-3)) = (-2; -3). Модуль равен √(4 + 9) = √13.
Вектор СА = ((1-(-2)); (0-1)) = (3; -1). Модуль равен √(9 + 1) = √10.
cos(BCA) = (-2*3 + (-3)*(-1))/( √13*√10) = -3/√130 ≈ -0,26312.
г) уравнение высоты CD.
Находим уравнение стороны АВ.
Вектор AB = ((3-(-2)); (3-1)) = (5; 2).
Уравнение АВ: (х + 2)/5 = (у -1)/2 или у = (2/5)х + (9/5).
Угловой коэффициент перпендикуляра к АВ (это высота СD) равен -1/(2/5) = -5/2. Подставим координаты точки С.
0 = (-5/2)*1 + b. Отсюда b = 5/2.
Уравнение CD: y = (-5/2)x + (5/2).
д) длина высоты СD.
Для вычисления расстояния от точки M(Mx; My) до прямой Ax + By + C = 0 используем формулу:
d = (A·Mx + B·My + C)/√A2 + B2
Подставим в формулу данные: координаты точки С(1; 0) и уравнение прямой АВ:
2х – 5у + 9 = 0.
d = (2·1 + (-5)·0 + 9)/√22 + (-5)2 = (2 + 0 + 9)/√4 + 25 =
= 11/√29 = 11√29/29 ≈ 2.0426487.
е) площадь треугольника АВС по векторам.
Если вершины треугольника заданы, как точки в прямоугольной декартовой системе координат: A1(x1,y1), A2(x2,y2), A3(x3,y3), то площадь такого треугольника можно вычислить по формуле определителя второго порядка:
S= ± (1 /2) *(x1−x3 y1−y3 )
(x2−x3 y2−y3 )
x1−x3 y1−y3
x2−x3 y2−y3
A(−2,1), B(3,3), С(1,0).
S = (1/2)}|((-2-1)*(3-0) – (1-0)*3-1))| = (1/2)*|(-9-2)| = 11/2 = 5,5 кв.ед.