Параллелограмм - четырехугольник, у которого противоположные стороны параллельны и равны. То есть если мы назовем параллелограмм ABCD, то АВ = СD и BC = AD.
Если две стороны относятся как 3:1, то они не равны. Значит это не могут быть противоположные стороны. Значит, это "ширина" и "длина". Из того, что периметр параллелограмма состоит из 2 "длин" и 2 "ширин", исходит, что эти две стороны являются полупериметром. Весь периметр это 32 см, значит полупериметр это 32\2 = 16 см.
Эти 2 стороны относятся 3:1. Если одна сторона это 1 часть, то другая сторона - это 3 части. В сумме 1 + 3 = 4 части. Эти 4 части являются полупериметром. Значит 1 часть это 16 \ 4 = 4 см.
Наименьшая сторона параллелограмма равнялась 1 части. Ее длина: 4*1 = 4 см
Треугольник ABC — равнобедренный, поэтому ∠BAC=∠CBA=45∘. В прямоугольном треугольнике MTA угол A равен 45∘, значит, угол M тоже равен 45∘ и треугольник равнобедренный. Следовательно, AT=MT=3,5. Проведём медиану CK в △ABC. В силу того, что треугольник равнобедренный, CK является и высотой. Отрезки CK и MT параллельны, так как оба перпендикулярны AB. Отрезок MT является средней линией △ACK, так как он параллелен CK и проходит через середину AC. Тогда AK=2AT=7. Так как CK — медиана, AB=2AK=14.
4 см
Объяснение:
Параллелограмм - четырехугольник, у которого противоположные стороны параллельны и равны. То есть если мы назовем параллелограмм ABCD, то АВ = СD и BC = AD.
Если две стороны относятся как 3:1, то они не равны. Значит это не могут быть противоположные стороны. Значит, это "ширина" и "длина". Из того, что периметр параллелограмма состоит из 2 "длин" и 2 "ширин", исходит, что эти две стороны являются полупериметром. Весь периметр это 32 см, значит полупериметр это 32\2 = 16 см.
Эти 2 стороны относятся 3:1. Если одна сторона это 1 часть, то другая сторона - это 3 части. В сумме 1 + 3 = 4 части. Эти 4 части являются полупериметром. Значит 1 часть это 16 \ 4 = 4 см.
Наименьшая сторона параллелограмма равнялась 1 части. Ее длина: 4*1 = 4 см
Если остались вопросы - спрашивайте!
14
Объяснение:
Треугольник ABC — равнобедренный, поэтому ∠BAC=∠CBA=45∘. В прямоугольном треугольнике MTA угол A равен 45∘, значит, угол M тоже равен 45∘ и треугольник равнобедренный. Следовательно, AT=MT=3,5. Проведём медиану CK в △ABC. В силу того, что треугольник равнобедренный, CK является и высотой. Отрезки CK и MT параллельны, так как оба перпендикулярны AB. Отрезок MT является средней линией △ACK, так как он параллелен CK и проходит через середину AC. Тогда AK=2AT=7. Так как CK — медиана, AB=2AK=14.