Бічна сторона рівнобедреного трикутника дорівнюе 28 см. Точкою до- тику вписаного кола вона ділиться у відношенні 4:3, починаючи від вершини трикутника. Знайдіть периметр трикутника.
Задача на построение циркулем и линейкой обычно подразумевает наличие циркуля и линейки без делений. Пусть ДАН отрезок АВ длиной 6 см.
Из точки начала данного отрезка А проводим прямую АС, образующую угол с данным отрезком. На этой прямой циркулем откладываем 5 РАВНЫХ отрезков ЛЮБОИ длины. Конец q последнего (пятого) отрезка соединяем с конgом B данного нам отрезка.
Затем через точку "h" последнего отрезка проводим прямую, параллельную отрезку qВ.
Точка D пересечения этой прямой с данным нам отрезком АВ и есть точка деления отрезка в отношении 1:4, считая от точки В.
Если надо разделить отрезок в отношении 1:4, начиная от точки А, циркулем замеряем отрезок DB и откладываем его от точки А, получая на отрезке АВ точку Е.
Как ПОСТРОИТЬ прямую, параллельную данной? Один из для нашего случая:
1. Проводим окружность 1 радиуса qh с центром в точке q (конец 5-го отрезка) на прямой АС.
2. Проводим окружность 2 радиуса qh с центром в точке m (точка пересечения окружность 2 с прямой qВ).
3. Проводим окружность 3 радиуса qh с центром в точке h на прямой АС.
4. Через точке h и n (точка пересечения окружностей 2 и 3) проводим прямую, которая и будет параллельна прямой qB, поскольку фигура hqmn - ромб по построению, так как все стороны четырехугольника равны радиусу qh.
Проведем на чертеже обе даигонали, расмотрим один из получившихся 4 равных треугольников.
Гипотенуза = стороне = 10 см, один из катетов равен половине диагонали основания=6. Трегольник прямоугольный, значит второй катет можно найти по т.Пифагора, корень из 10 к квадрате - 6 в квадрате равно корень из 100-36=кор из 64 = 8см.
Значит большая диагональ основания равна 8*2=16 см.
Большая диагональ основания является проекцией больше диагонали параллепипеда, опять получаем прямоуг теругольник, рассмтрев его мы можем найти высоту парал-да. корень из 20 в кв - 16 в кв = кор400-256= кор 144=12.
Задача на построение циркулем и линейкой обычно подразумевает наличие циркуля и линейки без делений. Пусть ДАН отрезок АВ длиной 6 см.
Из точки начала данного отрезка А проводим прямую АС, образующую угол с данным отрезком. На этой прямой циркулем откладываем 5 РАВНЫХ отрезков ЛЮБОИ длины. Конец q последнего (пятого) отрезка соединяем с конgом B данного нам отрезка.
Затем через точку "h" последнего отрезка проводим прямую, параллельную отрезку qВ.
Точка D пересечения этой прямой с данным нам отрезком АВ и есть точка деления отрезка в отношении 1:4, считая от точки В.
Если надо разделить отрезок в отношении 1:4, начиная от точки А, циркулем замеряем отрезок DB и откладываем его от точки А, получая на отрезке АВ точку Е.
Как ПОСТРОИТЬ прямую, параллельную данной? Один из для нашего случая:
1. Проводим окружность 1 радиуса qh с центром в точке q (конец 5-го отрезка) на прямой АС.
2. Проводим окружность 2 радиуса qh с центром в точке m (точка пересечения окружность 2 с прямой qВ).
3. Проводим окружность 3 радиуса qh с центром в точке h на прямой АС.
4. Через точке h и n (точка пересечения окружностей 2 и 3) проводим прямую, которая и будет параллельна прямой qB, поскольку фигура hqmn - ромб по построению, так как все стороны четырехугольника равны радиусу qh.
P=40см,все стороны равны=> каждая сторона =10см
D=12см
При пересечении диагонали делятся пополам.
Проведем на чертеже обе даигонали, расмотрим один из получившихся 4 равных треугольников.
Гипотенуза = стороне = 10 см, один из катетов равен половине диагонали основания=6. Трегольник прямоугольный, значит второй катет можно найти по т.Пифагора, корень из 10 к квадрате - 6 в квадрате равно корень из 100-36=кор из 64 = 8см.
Значит большая диагональ основания равна 8*2=16 см.
Большая диагональ основания является проекцией больше диагонали параллепипеда, опять получаем прямоуг теругольник, рассмтрев его мы можем найти высоту парал-да. корень из 20 в кв - 16 в кв = кор400-256= кор 144=12.
Sосн=1/2 * d1*d2= 1/2*12*16= 96cм^2
V=Sосн*Н=96*12=1152 cм^3