Бічна сторона рівнобедреного трикутника дорівнює 60 см, а центр вписаного кола ділить медіану, проведену до основи у відношенні 12:5. Знайдіть основу трикутника.
1). Дано: АВСD - параллелограмм, АК - биссектриса, ВК=19 см, КС=10 см. Найти Р (АВСD).
Рассмотрим ΔАВК - равнобедренный (∠ВАК=∠КАD по определению биссектрисы, ∠ВКА=∠КАD как внутренние накрест лежащие при ВС║АD и секущей АК), значит АВ=ВК=19 см.
АD=ВС=19+10=29 см; СD=АВ=19 см (как противоположные стороны параллелограмма)
Р=19*2+29*2=96 см.
2) Дано: АВСD - параллелограмм, DК - биссектриса, ВК=19 см, КС=10 см. Найти Р (АВСD).
Рассмотрим ΔDCК - равнобедренный (∠АDК=∠КDC по определению биссектрисы, ∠CКD=∠КDA как внутренние накрест лежащие при ВС║АD и секущей DК), значит KC=CD=10 см.
АD=ВС=19+10=29 см; СD=АВ=10 см (как противоположные стороны параллелограмма)
1). 96 см.; 2). 78 cм.
Объяснение: задача имеет 2 варианта решения
1). Дано: АВСD - параллелограмм, АК - биссектриса, ВК=19 см, КС=10 см. Найти Р (АВСD).
Рассмотрим ΔАВК - равнобедренный (∠ВАК=∠КАD по определению биссектрисы, ∠ВКА=∠КАD как внутренние накрест лежащие при ВС║АD и секущей АК), значит АВ=ВК=19 см.
АD=ВС=19+10=29 см; СD=АВ=19 см (как противоположные стороны параллелограмма)
Р=19*2+29*2=96 см.
2) Дано: АВСD - параллелограмм, DК - биссектриса, ВК=19 см, КС=10 см. Найти Р (АВСD).
Рассмотрим ΔDCК - равнобедренный (∠АDК=∠КDC по определению биссектрисы, ∠CКD=∠КDA как внутренние накрест лежащие при ВС║АD и секущей DК), значит KC=CD=10 см.
АD=ВС=19+10=29 см; СD=АВ=10 см (как противоположные стороны параллелограмма)
Р=10*2+29*2=78 см.
Объяснение:
Внешний угол смежен с внутренним углом, с которым у него общая вершина. Сумма смежных углов равна 180°
Тогда угол КВС=180°–угол САВ=180°–32°=148°
RB – биссектриса угла КВС по условию.
Следовательно угол КВR=угол КВС÷2=148°÷2=74°
Так как RB//AC по условию, то угол ВАС =угол KBR=74° как соответственные углы при параллельных прямых RB u AC и секущей АК.
Так как в задании не указана последовательность углов А и С, найду второй угол.
Сумма углов в любом треугольнике равна 180°
Тогда угол ВСА=180°–угол ВАС–угол СВА=180°–74°–32°=74°.
Получилось что углы А и С равны, тогда неважно в какой последовательности они записаны.
ответ: угол САВ=74°