Проекция ромба АВСD ра плоскость α, проходящую через сторону АВ - параллелограмм АВС1D1. Отрезок C1D1 параллелен и равен отрезку АВ, так как СD параллельна и равна АВ (стороны ромба). Двугранный угол, образованный полуплоскостями измеряется величиной его линейного угла, получаемого при пересечении двугранного угла плоскостью, перпендикулярной его ребру. Проведем через вершину ромба D плоскость DНD1, перпендикулярную ребру АВ. Тогда в прямоугольном треугольнике DНD1 угол DHD1=60° (угол между плоскостями по определению). Тогда <D1DH=30° и D1H=DH*Sin30° (так как DH - гипотенуза). Sin30=1/2. D1H=DH/2. Заметим, что DH - высота ромба ABCD, а D1H - высота параллелограмма АВС1D1. Площадь ромба (формула): Sabcd=(1/2)*D*d. Sabcd=(1/2)*20*14=140см². Площадь параллелограмма (и, естественно, ромба) равна произведению высоты параллелограмма (ромба) на его сторону. Sabcd=AB*DH (1). Sabc1d1=AB*D1H (2). Разделим (2) НА (1): Sabc1d1/Sabcd = AB*D1H/AB*DH =D1H/DH =DH/(2DH) = 1/2. Sabc1d1=140*(1/2) = 70см².
Это правило треугольника сложения векторов: Видим что конец первого вектора совпадает с началом второго. Значит результатом сложения будет вектор, обозначенный первой буквой первого вектора и второй буквой другого вектора:
АВ + ВD = AD, AC + CD = AD
Видим, что результаты сложения совпадают, что и требовалось доказать.
Аналогично и во втором примере:
AB + BC = AC, AD + DC = АС, что и треб. доказать.
АВСD - параллелограмм
1. CA = СВ + ВА = CD + DA
2. DA = DC + CA = DB + BA
1. вектор AB + вектор BC = AC
2. вектор MN + вектор NN = MN
3. вектор PQ+ вектор QR = PR
4.вектор EF + вектор DE = DE + EF = DF
выразите вектор BC через векторы AB и AC:
BC = AC - AB
взята точка D на стороне треугольника ABC. Выразите вектор BD через векторы AB и AD:
Отрезок C1D1 параллелен и равен отрезку АВ, так как СD параллельна и равна АВ (стороны ромба).
Двугранный угол, образованный полуплоскостями измеряется величиной его линейного угла, получаемого при пересечении двугранного угла плоскостью, перпендикулярной его ребру.
Проведем через вершину ромба D плоскость DНD1, перпендикулярную ребру АВ. Тогда в прямоугольном треугольнике
DНD1 угол DHD1=60° (угол между плоскостями по определению).
Тогда <D1DH=30° и D1H=DH*Sin30° (так как DH - гипотенуза).
Sin30=1/2. D1H=DH/2.
Заметим, что DH - высота ромба ABCD, а D1H - высота параллелограмма АВС1D1.
Площадь ромба (формула): Sabcd=(1/2)*D*d.
Sabcd=(1/2)*20*14=140см².
Площадь параллелограмма (и, естественно, ромба) равна произведению высоты параллелограмма (ромба) на его сторону.
Sabcd=AB*DH (1).
Sabc1d1=AB*D1H (2). Разделим (2) НА (1):
Sabc1d1/Sabcd = AB*D1H/AB*DH =D1H/DH =DH/(2DH) = 1/2.
Sabc1d1=140*(1/2) = 70см².
Объяснение:
1. вектор AB + вектор BD= вектор AC + вектор CD
2. вектор AB + вектор BC= вектор AD + вектор DC
Это правило треугольника сложения векторов: Видим что конец первого вектора совпадает с началом второго. Значит результатом сложения будет вектор, обозначенный первой буквой первого вектора и второй буквой другого вектора:
АВ + ВD = AD, AC + CD = AD
Видим, что результаты сложения совпадают, что и требовалось доказать.
Аналогично и во втором примере:
AB + BC = AC, AD + DC = АС, что и треб. доказать.
АВСD - параллелограмм
1. CA = СВ + ВА = CD + DA
2. DA = DC + CA = DB + BA
1. вектор AB + вектор BC = AC
2. вектор MN + вектор NN = MN
3. вектор PQ+ вектор QR = PR
4.вектор EF + вектор DE = DE + EF = DF
выразите вектор BC через векторы AB и AC:
BC = AC - AB
взята точка D на стороне треугольника ABC. Выразите вектор BD через векторы AB и AD:
BD = AD - AB
Дан параллелограмм ABCD. Найдите разность:
1. вектор AB- вектор AC = CB
2. вектор BC - вектор CD = AB+BC = AC