abc - равнобедренный треугольник, тк ав=ас=6. значит углы асв и авс равны между собой. найдём их: abc=acb = (180 - bac)/2 = (180-60)/2 = 60. то есть все углы у треугольника по 60. значит он равносторонний , и все стороны равны 6.
пусть точка e - середина bc. be=ec=3. найдём ае, который является и высотой и меридианой по теореме пифагора (если я не ошибаюсь с названием): ае = корень из (ас^2 - be^2) = корень из (36-9) = корень из (25) = 5.
теперь рассмотри треугольник dae. он прямоугольный (ad также перпендикулярно плоскости треугольника, как и bp. то есть ad образует прямой угол с любым отрезком или прямой, которые принадлежат плоскости треугольника. угол dae - прямой.)
опять же по теореме пифагора найдём гиппотенузу de:
de= корень из (ae^2 + da^2) = корень из (25+9) = корень из (36) = 6
1) поскольку один угол 60 градусов, то второй 30, а мы знаем, что катет против угла в 30 градусов равен половине гипотенузы. Отсюда катет1 = 0.5*8=4. Так же мы знаем, что есть теорема пифагора.
8*8=(4*4)+(x*x)
64=16+x*x
x*x=48
x=корень 48
отсюда первый катет можно сократить как 4 корня из 3, второй катет равен 4
2)Площадь равна полупроизведению катетов, то есть (катет1*катет2)/2
(4*4корняиз3)/2, или (16корнейиз3)/2, или 8 корней из 3
3)Радиус описанной окружности - это половина ее диаметра, а диаметром описанной окружности вокруг прямоугольного треугольника - это его гипотенуза. Значит, радиус - это половина гипотенузы. 8:2=4
abc - равнобедренный треугольник, тк ав=ас=6. значит углы асв и авс равны между собой. найдём их: abc=acb = (180 - bac)/2 = (180-60)/2 = 60. то есть все углы у треугольника по 60. значит он равносторонний , и все стороны равны 6.
пусть точка e - середина bc. be=ec=3. найдём ае, который является и высотой и меридианой по теореме пифагора (если я не ошибаюсь с названием): ае = корень из (ас^2 - be^2) = корень из (36-9) = корень из (25) = 5.
теперь рассмотри треугольник dae. он прямоугольный (ad также перпендикулярно плоскости треугольника, как и bp. то есть ad образует прямой угол с любым отрезком или прямой, которые принадлежат плоскости треугольника. угол dae - прямой.)
опять же по теореме пифагора найдём гиппотенузу de:
de= корень из (ae^2 + da^2) = корень из (25+9) = корень из (36) = 6
ответ: de=6
1) Катет 1= 4 корня из 3
катет 2= 4
2) 8 корней из 3
3) 4
Объяснение:
1) поскольку один угол 60 градусов, то второй 30, а мы знаем, что катет против угла в 30 градусов равен половине гипотенузы. Отсюда катет1 = 0.5*8=4. Так же мы знаем, что есть теорема пифагора.
8*8=(4*4)+(x*x)
64=16+x*x
x*x=48
x=корень 48
отсюда первый катет можно сократить как 4 корня из 3, второй катет равен 4
2)Площадь равна полупроизведению катетов, то есть (катет1*катет2)/2
(4*4корняиз3)/2, или (16корнейиз3)/2, или 8 корней из 3
3)Радиус описанной окружности - это половина ее диаметра, а диаметром описанной окружности вокруг прямоугольного треугольника - это его гипотенуза. Значит, радиус - это половина гипотенузы. 8:2=4