Построим сумму векторов а и b и их разность. ↑АС = ↑р = ↑а + ↑b ↑DB = ↑q = ↑a - ↑b Чтобы найти угол между векторами p и q, построим вектор, равный вектору q, с началом в точке А. ∠ЕАС - искомый. Из ΔABD найдем длину вектора q по теореме косинусов: |↑q|² = AB² + AD² - 2·AB·AD·cos60° = 25 + 64 - 2·5·8·1/2 = 89 - 40 = 49 |↑q| = 7 Сумма углов параллелограмма, прилежащих к одной стороне, равна 180°, значит ∠АВС = 120°. Из ΔABС найдем длину вектора р по теореме косинусов: |↑p|² = AB² + BC² - 2·AB·BC·cos120° = 25 + 64 + 2·5·8·1/2 = 89 + 40 = 129 |↑p| = √129
Из ΔЕАС по теореме косинусов: cos α = (AE² + AC² - EC²) / (2 · AE · AC) cos α = (49 + 129 - 256) / (2 · 7 · √129) = - 78 / (14√129) = - 39√129 / 903 cos α = - 13√129/301
↑АС = ↑р = ↑а + ↑b
↑DB = ↑q = ↑a - ↑b
Чтобы найти угол между векторами p и q, построим вектор, равный вектору q, с началом в точке А.
∠ЕАС - искомый.
Из ΔABD найдем длину вектора q по теореме косинусов:
|↑q|² = AB² + AD² - 2·AB·AD·cos60° = 25 + 64 - 2·5·8·1/2 = 89 - 40 = 49
|↑q| = 7
Сумма углов параллелограмма, прилежащих к одной стороне, равна 180°, значит ∠АВС = 120°.
Из ΔABС найдем длину вектора р по теореме косинусов:
|↑p|² = AB² + BC² - 2·AB·BC·cos120° = 25 + 64 + 2·5·8·1/2 = 89 + 40 = 129
|↑p| = √129
Из ΔЕАС по теореме косинусов:
cos α = (AE² + AC² - EC²) / (2 · AE · AC)
cos α = (49 + 129 - 256) / (2 · 7 · √129) = - 78 / (14√129) = - 39√129 / 903
cos α = - 13√129/301
Найдите координаты точек пересечения графиков функций
Если точка с координатами (х;у) точка пересечения то
1)у=-6х+1 и у=5х+9
-6x+1=5x+9
-6x-5x=9-1
-11x= 8
x= - 8/11
тогда у= 5*(-8/11)+9= -40/11 + 99/11=59/11=5⁴/₁₁
точка пересечения (-⁸/₁₁; 5 ⁴/₁₁)
2) у=21-9х и у=-2,5х+8
21-9x= -2.5x+8
-9x+2.5x=8-21
-6.5x=-13
x= -13/ -6.5
x=2
тогда у=21-9*2=21-18=3
точка перескечения (2;3)
3) у=16,2+8х и у=-0,8х+7,4
16,2+8х= -0,8х+7,4
16,2-7,4= -0,8х-8х
8,8= -8,8х
х= -1
тогда у= 16,2+8*(-1)=16,2-8=8,2
точка пересечения (-1; 8,2)
5) у=1-3х и у=-х-1
1-3х= -х-1
-3х+х=-1-1
-2х=-2
х=1
тогда у=1-3*1=1-3=-2
точка пересечения (1; -2)
6) у=1+7х и у=6,5х
1+7х=6,5х
1=6,5х-7х
1=-0,5х
х= -2
тогда у= 1+7*(-2)=1-14=-13
точка пересечения (-2; -13)