В треугольнике ABC угол C равен 90°, AB = АС•√2, BC = 6. Найдите высоту CН. По т.Пифагора АВ²=АС²+ВС² АВ²-АС²=ВС² Примем АС=а. Тогда гипотенуза АВ=а√2. 2а²-а²=36⇒ а=√36=6 a√2=6√2 АС=ВС - треугольник равнобедренный. В равнобедренном треугольнике высота, проведенная к основанию, совпадает с медианой. В равнобедренном прямоугольном треугольнике высота из прямого угла=0,5 гипотенузы ( по свойству медианы из прямого угла). СН =(6√2):2=3√2
Иногда эту высоту требуется записать в ответе как √2CH. Тогда, так как √2•3•√2=6, в ответе пишется 6.
По т.Пифагора АВ²=АС²+ВС²
АВ²-АС²=ВС²
Примем АС=а. Тогда гипотенуза АВ=а√2.
2а²-а²=36⇒
а=√36=6
a√2=6√2
АС=ВС - треугольник равнобедренный. В равнобедренном треугольнике высота, проведенная к основанию, совпадает с медианой.
В равнобедренном прямоугольном треугольнике высота из прямого угла=0,5 гипотенузы ( по свойству медианы из прямого угла).
СН =(6√2):2=3√2
Иногда эту высоту требуется записать в ответе как √2CH. Тогда, так как √2•3•√2=6, в ответе пишется 6.
Відповідь:Дано:
треугольник DEF,
угол D = 90, угол F = 30,
ЕР - биссектриса,
ЕР + РD = 12 см.
Найти длину FP - ?
1 ) Рассмотрим треугольник DEF.
угол Е = 180 - (угол D + угол F);
угол Е = 180 - (90 + угол 30);
угол Е = 180 - 120;
угол Е = 60;
2) Так как ЕР - биссектриса, то угол DЕР = РЕF = 60 : 2 = 30;
3) Рассматриваем прямоугольный треугольник DЕР. Напротив угла в 30 градусов лежит катет, который равен половине гипотенузы, то есть DР = 1/2 * ЕР;
2) Так как ЕР + РD = 12 см, то
ЕР + 1/2 ЕР = 12;
Ер * (1 + 1/2) = 12;
ЕР * 1 1/2 = 12;
ЕР = 12 : 1 1/2;
ЕР = 12 : 3/2;
ЕР = 12 * 2/3;
ЕР = (12 * 2)/3;
ЕР = (4 * 2)/1;
ЕР = 8 см.
ответ: 8 сантиметров.