Искомая площадь - это произведение периметра основания на высоту призмы. А высота призмы - это второй катет в треугольнике, состоящем из1) Диагональ большей по площади боковой грани (это его гипотенуза)2) Гипотенузы основания (именно не най "стоит" упомянутая выше "большая по площади боковая грань", и это его первый катет)3) высота призмы (это ее второй катет ) пункт первый есть в условиях задачки, пункт второй посчиитаем из треугольника основания:√ (6 в квадрате + 8 в квадрате) = √ (36+64) = √ 100 = 10 Теперь, пора настала, считаем пункт три - он же высота призмы:√ (10√2 в квадрате - 10 в квадрате) = √ (200-100) = √ 100 = 10 Вот и все! Теперь периметр основания:6+8+10 = 24умножим на высоту призмы:24*10 = 240
Делай по той же схеме епта Высота, опущенная на основание, находится по теореме Пифагора:h^2 = 10^2 - (16/2)^2 = 36, h = 6Площадь равна:S = 16*6/2 = 48 cm^2Найдем полупериметр:р = (16+10+10)/2 = 18 см.Воспользуемся формулами площади через радиусы вписанной и описанной окружности:S = pr, r = S/p = 48/18 = 8/3 cmS = abc/(4R), R = abc/(4S) = 16*10*10/(4*48) = 25/3 cmЦентры окружностей находятся на высоте, опущенной на гипотенузу.Центр описанной окружности находится от основания высоты на расстоянии:кор(R^2 - 8^2) = кор( 625/9 - 64) = кор(49/9) = 7/3.Центр вписанной окружности находится на расстоянии r= 8/3 см от основания высоты.Тогда расстояние между центрами: 8/3 - 7/3 = 1/3.ответ: r= 8/3 см; R = 25/3 см; 1/3 см.