Апофема правильной четырехугольной пирамиды равна 8 см, а радиус окружности, вписанной в основание 3 см. найдите площадь полной поверхности пирамиды. если можно, то с рисунком, . заранее )
Так как в левой части уравнений (1) и (2) - одно и то же число, то из этого следует, что:
180° - х = 180° - у
х = у
(∠А +∠В) = (∠АСD +∠DCE).
Так как ∠А = ∠В и ∠АСD = ∠DCE,
то из этого следует, что ∠А = ∠В = ∠АСD = ∠DCE.
Так как ∠А и ∠АСD являются внутренними накрест лежащими углами при прямых АВ и СD и секущей АС, при этом ∠А = ∠АСD, то это означает, что АВ║CD (если при пересечении двух прямых третьей внутренние накрест лежащие углы равны, то такие прямые параллельны), - что и требовалось доказать.
Примечание.
Аналогично можно доказать параллельность прямых АВ и СD через равенство ∠В = ∠DCE, которые являются соответственными при прямых АВ и СD и секущей ВЕ: если при пересечении двух прямых третьей соответственные углы равны, то такие прямые параллельны. Следовательно, АВ║CD. Что и требовалось доказать.
Площадь боковой поверхности цилиндра:
Sбок = 2πRH
По условию H = R - 2,
2πR(R - 2) = 160π
R(R - 2) = 80
R² - 2R - 80 = 0 по тоереме Виета:
R = 10 или R = - 8 (не подходит по смыслу задачи)
Н = R - 2 = 8 см
а) Осевое сечение - прямоугольник, стороны которого равны диаметру основания и высоте цилиндра:
Sос. сеч. = 2R · H = 2 · 10 · 8 = 160 см²
б) Сечение цилинра, параллельное оси, имеет форму прямоугольника, одна сторона которого равна высоте. Найдем другую сторону (АВ).
ΔАОВ равнобедренный (АО = ВО как радиусы). Проведем ОС⊥АВ, ОС = 6 см по условию. ОС является так же медианой, ⇒ АС = ВС.
ΔАОС: ∠АСО = 90°, по теореме Пифагора:
АС = √(АО² - ОС²) = √(10² - 6²) = √(100 - 36) = √64 = 8 см
АВ = 2АС = 16 см
Sсеч = AB · H = 16 · 8 = 128 см²
См. Объяснение
Объяснение:
Угол АСЕ по отношению к треугольнику АВС является внешним углом, который равен сумме углов А и В.
Действительно, так как сумма внутренних углов треугольника равна 180°, то:
∠АСВ = 180° - (∠А +∠В) = 180° - х - уравнение (1)
С другой стороны, так как угол ВСЕ - развёрнуты (равен 180 °), то:
∠АСВ = 180° - (∠АСD +∠DCE) = 180° - у - уравнение (2)
Так как в левой части уравнений (1) и (2) - одно и то же число, то из этого следует, что:
180° - х = 180° - у
х = у
(∠А +∠В) = (∠АСD +∠DCE).
Так как ∠А = ∠В и ∠АСD = ∠DCE,
то из этого следует, что ∠А = ∠В = ∠АСD = ∠DCE.
Так как ∠А и ∠АСD являются внутренними накрест лежащими углами при прямых АВ и СD и секущей АС, при этом ∠А = ∠АСD, то это означает, что АВ║CD (если при пересечении двух прямых третьей внутренние накрест лежащие углы равны, то такие прямые параллельны), - что и требовалось доказать.
Примечание.
Аналогично можно доказать параллельность прямых АВ и СD через равенство ∠В = ∠DCE, которые являются соответственными при прямых АВ и СD и секущей ВЕ: если при пересечении двух прямых третьей соответственные углы равны, то такие прямые параллельны. Следовательно, АВ║CD. Что и требовалось доказать.