анечка петрусь и николай независимо друг от друга нарисовали по одному равнобедренном треугольнике abc, все углы которых измеряются целым числом градусов. оказалось, что основы ac этих треугольников равные для каждого из них на промены bc существует такая точка e, что be = ac, а угол aec также измеряется целым числом градусив. найдите ответ
а) все три нарисованные треугольника равны между собой
b) среди них найдутся принайни два уровня треугольника
Объяснение:
Вообще при параллельных прямых и секущей образуется 8 углов, в значений всего 2, т.к. они там все попарно равны, на рисунке равны 1 и 3 как вертикальные, 1 и 5 как соответственные, 5 и 7 как вертикальные
/1=/3=/5=/7
И соответственно также: /2=/4=/6=/8
Это верно для обоих случаев в этой задаче
Теперь к решению:
1.
Предположим, что угол 2 равен 35 градусов
Тогда угол 1, как смежный с ним, равен 180-35=145 градусов, остальное доказывается так же, как я расписал выше, все углы будут либо 35, либо 135 градусов, это основные свойства.
2.
Предположим, что угол 2 это х градусов, тогда угол 1 это 4х градусов, составляем уравнение:
х+4х=180
5х=180
х=36
Тогда угол 2 равен 36 градусов
А угол 1 равен 144 градуса
И остальные тоже соответственно равны им по свойствам углов
ответ:Дан ромб, сторона которого равна 17 см, а разность диагоналей - 14 см.
Диагонали d1 и d2 ромба перпендикулярны, образуют 4 треугольника.
По заданию d1 - d2 = 14. Разделим на 2 обе части.
(d1/2) - (d2/2) = 7.
Обозначим (d1/2) за х - это катет треугольника.
Второй катет равен х - 7.
По Пифагору a ² = (d1/2) ² + (d2/2) ².
289 = x² + (x - 7) ².
289 = x² + x² - 14x + 49.
2x² - 14x = 240 разделим на 2 и получаем квадратное уравнение.
х² - 7 х - 120 = 0.
Квадратное уравнение, решаем относительно x:
Ищем дискриминант:
D = (-7) ^2-4*1 * (-120) = 49-4 * (-120) = 49 - (-4*120) = 49 - (-480) = 49+480=529;
Дискриминант больше 0, уравнение имеет 2 корня:
x_1 = (√529 - (-7)) / (2*1) = (23 - (-7)) / 2 = (23+7) / 2=30/2=15;
x_2 = (-√529 - (-7)) / (2*1) = (-23 - (-7)) / 2 = (-23+7) / 2=-16/2=-8.
Один катет получен: (d1/2) = 15 см, второй равен 15 - 7 = 8 см.
Площадь ромба равна:
S = 4 * (1/2) * 15*8 = 15*16 = 240 см².
Объяснение: