Очевидно, что внутри отрезка AB такой точки существовать не может (если бы существовало, тогда сумма двух меньших отрезков должна быть больше длины исходной, что является противоречием), поэтому эта точка должна лежать где-то за пределами отрезка (по условию же сказано, что нужно найти точки на прямой, а не внутри отрезка).
Пусть l - расстояние от искомой точки X до A, тогда l + 6 - это расстояние от X до B. Тогда справедливо уравнение:
Значит, точка X должна отстоять от точки A на 2 см
Объяснение:
Очевидно, что внутри отрезка AB такой точки существовать не может (если бы существовало, тогда сумма двух меньших отрезков должна быть больше длины исходной, что является противоречием), поэтому эта точка должна лежать где-то за пределами отрезка (по условию же сказано, что нужно найти точки на прямой, а не внутри отрезка).
Пусть l - расстояние от искомой точки X до A, тогда l + 6 - это расстояние от X до B. Тогда справедливо уравнение:
Значит, точка X должна отстоять от точки A на 2 см
Выглядит схематично это так:
2см 6см
---------------|----------------|------------------------------------------|----------------->
X A B
Это справедливо и для случая:
6см 2см
------------------|------------------------------------------|-------------|--------->
A B X
Больше таких точек нет.
1. дан тр. ABC, BD медиана, тк треугольник равнобедренный, то BD делит его основание пополам. из этого AD=DC
2. тк треугольник равнобедренный, то медиана BD перпендикулярна к AC ( уг. ADB= уг BDC )
3. значит тр. ADC и BDC прямоугольные и равные ( BD общая, углы равны, AB=BC )
по теореме пифагора найдем AD тр ABD
AD^2= AB^2-BD^2
AD= корень кв. 13^2-12^2
AD=корень кв. 169-144
AD= корень кв. 25
AD=5
4. Значит AD=DC= 5 см AC=10см
5. Pтр= 13+13+ 10 =36 см
6. Sтр= 1/2 AC*BD
Sтр= 1/2* 10*12= 60 см
ответ: Sтр=60 см, Pтр = 36 см