Решение: возьмем произвольный ромб и обозначим его как ABCD, проведем в нем диагонали AC и BD. Они пересекутся в точке О. Известно также, что диагонали ромба перпендикулярны и делят его углы пополам. Тогда угол ВСО = углу ОСD = 104/2=51*. Рассмотрим один из получившихся треугольников - ВОС. В нем угол ВОС = 90* (так как диагонали ромба перпендикулярны). Угол ВСО = 51*, угол ВОС = 90*, значит угол ОВС = 180 - (51*+90*) = 39*. Но треуг. ВСО = треуг. АВО и значит все стороны и углы одного соответственно равны сторонам и углам другого. То есть в треугольнике АВО угол АВО = 39*, а угол ВОА = 90*.
3) Дано:
АВCD - ромб,
AC и BD - диагонали ромба,
О - точка пересечения диагоналей,
угол BCD = 104*
Найти углы ABO.
Решение: возьмем произвольный ромб и обозначим его как ABCD, проведем в нем диагонали AC и BD. Они пересекутся в точке О. Известно также, что диагонали ромба перпендикулярны и делят его углы пополам. Тогда угол ВСО = углу ОСD = 104/2=51*. Рассмотрим один из получившихся треугольников - ВОС. В нем угол ВОС = 90* (так как диагонали ромба перпендикулярны). Угол ВСО = 51*, угол ВОС = 90*, значит угол ОВС = 180 - (51*+90*) = 39*. Но треуг. ВСО = треуг. АВО и значит все стороны и углы одного соответственно равны сторонам и углам другого. То есть в треугольнике АВО угол АВО = 39*, а угол ВОА = 90*.
АВСД - параллелограмм
Из точки В проведено 2 перпендикуляра на стороны АД и СД
Назовем их ВК и ВМ соответственно
ВК = 6
ВМ = 10
СД = АВ (как стороны параллелограмма)
Р = 2АВ + 2АД = 48
АВ + АД = 24
Диагональ ВД делит параллелограм на равные по площади треугольники с высотами ВК и ВМ
Площадь АВД = 1/2 * АД * ВК = 3 АД
Площадь ДВС = 1/2 * ДС * ВМ = 5 ДС = 5 АВ
сложим систему: 3 АД = 5 АВ АВ + АД = 24 АВ = 24 - АД 3 АД = 5(24 - АД) 3 АД = 120 - 5 АД 8 АД = 120 АД = 15 АВ = 24 - 15 = 9 Разность между смежными сторонами параллелограмма равна 15 - 9 = 6