Abcda'b'c'd' – наклонная призма;
авсd – параллелограмм,
| ав | = a, bc = 2а, 2bad=60°,
| в'b' = h, [в'b, l(abcd),
в'[ad], ав,' = | в,'di,
[cd][d'c]=0, c'e = 2 ев',
еє[в'c'], fe[bb1, bf = | fb.
i. построить сечение призмы
плоскостью, проходящей через:
а) точки e, f, 0;
b) (св) параллельно (dc);
с) точку. в параллельно (bcd);
Объяснение:
1) Сторона, лежащая напротив угла 30°, равна половине гипотенузы (это такая теорема или как их там называют, крч в учебнике есть). Поэтому, 15:2=7,5. ответ: 7,5см
2) Если внешний угол равен 120°, то внутренний, т.е. один из углов треугольника, равен: 180(суммарный угол смежных углов)-120=60°. Сумма всех углов треугольника, как правило, равна 180°. Нам известно, что второй угол прямой(90=). Тогда третий угол равен: 180-90-60=30°. Дальше используем ту же теорему, что и в первом задании, только на этот раз известна не гипотенуза, а сторона, тогда: 4×2=8. ответ: 8см
2. Углы в 65° равны как накрест лежащие, следовательно AB || CD, следовательно угол а равен 85° как соответственный.
3. <BAC + <AMK = 180°, а они односторонние углы, следовательно MK || AC, следовательно <MKB = <ACB, следовательно <MKB - <ACB = 0.
4. Пусть x - коэффициент пропорциональности, следовательно углы будут 2x и 7x.
Сумма односторонних углов при параллельных прямых равна 180°, следовательно составляем уравнение.
2x + 7x = 180
9x = 180
x = 20
Меньший угол будет равен 2 × 20 = 40°.
5. (см. рисунок)
<CBM = <BMA как накрест лежащие (т. к. BC || AD по условию).
<ABM = <BMA, следовательно треугольник ABM - равнобедренный.