A - ребро пирамиды Н - высота пирамиды Объём пирамиды вычисляется по формуле: Vпир = 1/3 Sосн · Н. Площадь основания равна S ocн = a². Высоту пирамиды можно найти, рассматривая прямоугольный треугольник, в котором катетами являются высота Н и половина диагонали d квадрата, лежащего в основании пирамиды. Гипотенузой этого треугольника является боковое ребро а пирамиды. Половина диагонали квадратного основания d = а· 0.5√2 Высоту Н найдём из теоремы Пифагора: а² = d² + H² → H = √(a² - d²) = = √(a² - 0.5a²) = √(0.5a²) = 0.5a √2 Вернёмся к объёму Vпир = 1/3 Sосн · Н = 1/3 a² · 0.5a √2 = a³/6 · √2 Подставим значение Vпир = 18 18 = a³/6 · √2 → а³ = 18 · 6 : √2 → а = ∛4 · 27 : √2) = 3∛(4:√2) = 3∛(√8) = = 3 · 8^(1/6) = 3√2 ответ: длина ребра равна 3√2
AD = 15 см.
Объяснение:
Дано: AD⊥α, AN = 17 см. AM = 25 см. DM - DN = 12 см.
Найти AD.
Решение.
Пусть DN = x, тогда DM = х+12. (ортогональная проекция большей наклонной больше ортогональной проекции меньшей наклонной).
По Пифагору в прямоугольных треугольниках ADN и ADM имеем: AD² = AN² - DN² и AD² = AM² - DM² соответственно.
Тогда AN² - DN² = AM² - DM² или 17² - х² = 25² - (х+12)². =>
24х = 25² - 17² - 12² => х = (625 - 289 - 144)/24 = 192/24 = 8 см.
Итак, DN = 8 см. => по Пифагору из треугольника ADN:
AD = √(AN² - DN²) = √(17² - 8²) = √(25·9) = 15 см.
Н - высота пирамиды
Объём пирамиды вычисляется по формуле: Vпир = 1/3 Sосн · Н.
Площадь основания равна S ocн = a².
Высоту пирамиды можно найти, рассматривая прямоугольный треугольник, в котором катетами являются высота Н и половина диагонали d квадрата, лежащего в основании пирамиды. Гипотенузой этого треугольника является боковое ребро а пирамиды.
Половина диагонали квадратного основания d = а· 0.5√2
Высоту Н найдём из теоремы Пифагора: а² = d² + H² → H = √(a² - d²) =
= √(a² - 0.5a²) = √(0.5a²) = 0.5a √2
Вернёмся к объёму Vпир = 1/3 Sосн · Н = 1/3 a² · 0.5a √2 = a³/6 · √2
Подставим значение Vпир = 18
18 = a³/6 · √2 → а³ = 18 · 6 : √2 → а = ∛4 · 27 : √2) = 3∛(4:√2) = 3∛(√8) =
= 3 · 8^(1/6) = 3√2
ответ: длина ребра равна 3√2