Если все боковые грани наклонены к основанию под одинаковыми углами, то проекции высот боковых граней на основание - это радиусы r вписанной в основание окружности.
Высота основания к стороне 6 см равна √)5² - (6/2)²) = 4 см.
Площадь основания So = (1/2)*6*4 = 12 см².
Периметр основания Р = 2*5 + 6 = 16 см. полупериметр р = 16/2 = 8 см.
Радиус вписанной окружности r = S/p = 12/8 = 1,5 см.
Высота наклонной грани hн = r/cos 60° = 1.5/(1/2) = 3 см.
Площадь боковой поверхности Sбок = (1/2)Рhн = (1/2)*16*3 = 24 см².
1) В четырехугольнике ABCD точки E и F — соответственно середины равных сторон AB и CD . Серединные перпендикуляр к стороне AD пересекает серединный перпендикуляр к стороне BC в точке P . Докажите, что серединный перпендикуляр, проведенный к отрезку EF проходит через точку P .
2) В четырехугольнике ABCD серединные перпендикуляры к сторонамAB и CD пересекаются на стороне AD . Известно, что \angle A = \angle D . Докажите, что в четырехугольнике диагонали равны.
3) В квадрате ABCD даны точки E и F соответственно на сторонах AB и BC ,причем \angle AED = \angle FED . Докажите равенство EF = AE + FC
Если все боковые грани наклонены к основанию под одинаковыми углами, то проекции высот боковых граней на основание - это радиусы r вписанной в основание окружности.
Высота основания к стороне 6 см равна √)5² - (6/2)²) = 4 см.
Площадь основания So = (1/2)*6*4 = 12 см².
Периметр основания Р = 2*5 + 6 = 16 см. полупериметр р = 16/2 = 8 см.
Радиус вписанной окружности r = S/p = 12/8 = 1,5 см.
Высота наклонной грани hн = r/cos 60° = 1.5/(1/2) = 3 см.
Площадь боковой поверхности Sбок = (1/2)Рhн = (1/2)*16*3 = 24 см².
Sполн = 12 + 24 = 36 см².
1) В четырехугольнике ABCD точки E и F — соответственно середины равных сторон AB и CD . Серединные перпендикуляр к стороне AD пересекает серединный перпендикуляр к стороне BC в точке P . Докажите, что серединный перпендикуляр, проведенный к отрезку EF проходит через точку P .
2) В четырехугольнике ABCD серединные перпендикуляры к сторонамAB и CD пересекаются на стороне AD . Известно, что \angle A = \angle D . Докажите, что в четырехугольнике диагонали равны.
3) В квадрате ABCD даны точки E и F соответственно на сторонах AB и BC ,причем \angle AED = \angle FED . Докажите равенство EF = AE + FC
так???!!!