а) Проекция точки S на плоскость основания это точка O — центр основания. Центр правильного треугольника является точкой пересечения его медиан, поэтому . Прямая проецируется на плоскость основания и прямую Поэтому проекция точки — точка — лежит на отрезке M — середина AS, поэтому ее проекция — это середина отрезка AO. Таким образом, проекции точек S и M на плоскость основания делят высоту AN треугольника ABC на три равные части.
б) Прямая проектируется на плоскость основания в прямую Поэтому проекция точки — точка — лежит на отрезке Значит, прямая является проекцией прямой следовательно, угол — искомый. Заметим, что где — центр основания, значит, — средняя линия треугольника а поэтому — середина
A1. Две прямые на плоскости называются параллельными, если они:
4) не пересекаются
А2. Один из признаков параллельности двух прямых гласит:
Если при пересечении двух прямых секущей накрест лежащие углы равны, то прямые параллельны
А3. Выберите утверждение, являющееся аксиомой параллельных прямых:
Через точку, не лежащую на данной прямой, проходит только одна прямая, параллельная данной
А4. Если две параллельные прямые пересечены секущей, то:
Соответственные углы равны
А5. Если прямая перпендикулярна одной из двух параллельных прямых, то:
Она перпендикулярна и другой
А6. Всякая теорема состоит из нескольких частей:
Условия и заключения
А7. При пересечении двух прямых секущей образуются углы, имеющие специальные названия:
Накрест лежащие, соответственные, односторонние
А8. Аксиома – это:
Положение геометрии, не требующее доказательства
А9. Выберите утверждение, которое является признаком параллельности прямых:
Если при пересечении двух прямых секущей накрест лежащие углы равны, то прямые параллельны
А10. Если прямая не пересекает одну из двух параллельных прямых, то:
Другую прямую она тоже не пересекает
или
С другой прямой она совпадает
а) Проекция точки S на плоскость основания это точка O — центр основания. Центр правильного треугольника является точкой пересечения его медиан, поэтому . Прямая проецируется на плоскость основания и прямую Поэтому проекция точки — точка — лежит на отрезке M — середина AS, поэтому ее проекция — это середина отрезка AO. Таким образом, проекции точек S и M на плоскость основания делят высоту AN треугольника ABC на три равные части.
б) Прямая проектируется на плоскость основания в прямую Поэтому проекция точки — точка — лежит на отрезке Значит, прямая является проекцией прямой следовательно, угол — искомый. Заметим, что где — центр основания, значит, — средняя линия треугольника а поэтому — середина
Тогда
и
Из прямоугольного треугольника находим:
Из прямоугольного треугольника находим:
Значит, искомый угол равен
ответ:arctg 10/21