Угол между образующей конуса и плоскостью основания равен углу между образующей и радиусом основания, проведенного к данной образующей. Площадь боковой поверхности конуса: pi*R*l, площадь основания - pi*R^2. Поскольку площадь боковой поверхности в два раза больше площади основания, то pi*R*l = 2*pi*R^2. упрощаем уравнение: l = 2R. Из рисунка CB = 2OB. Из прямоугольного треугольника COB: угол, который лежит против катета, который в два раза меньше гипотенузы, равен 30 градусов. OB - катет, CB - гипотенуза, следовательно, угол BOC = 30 градусов. Искомый угол CBO = 90 - 30 = 60 градусов.
ответ: площадь прямоугольника увеличилась в 4 раза
Объяснение:
Пусть а - ширина изначального прямоугольника, b - его длина. Тогда площадь такого прямоугольника рассчитаем по формуле: S1 = ab.
Теперь увеличим ширину прямоугольника в 2 раза, получаем 2а. Его длину увеличим в 2 раза, получим 2b. Таким образом, площадь нового прямоугольника будет: S2 = 2a * 2b = 4ab.
Чтобы узнать во сколько раз увеличилась площадь прямоугольника после увеличения его длины и ширины, разделим большую площадь на меньшую:
S1/S2 =4ab/ab = 4.
ответ: площадь прямоугольника увеличилась в 4 раза
ответ: площадь прямоугольника увеличилась в 4 раза
Объяснение:
Пусть а - ширина изначального прямоугольника, b - его длина. Тогда площадь такого прямоугольника рассчитаем по формуле: S1 = ab.
Теперь увеличим ширину прямоугольника в 2 раза, получаем 2а. Его длину увеличим в 2 раза, получим 2b. Таким образом, площадь нового прямоугольника будет: S2 = 2a * 2b = 4ab.
Чтобы узнать во сколько раз увеличилась площадь прямоугольника после увеличения его длины и ширины, разделим большую площадь на меньшую:
S1/S2 =4ab/ab = 4.
ответ: площадь прямоугольника увеличилась в 4 раза