1. Сумма двух векторов: начало второго вектора совмещается с концом первого, сумма же этих векторов есть вектор с началом, совпадающим с началом первого, и концом, совпадающим с концом 2-го.
Разделим вектор CB на 3 равные части. Для этого проведем из точки С луч "n" и отложим на нем циркулем 3 РАВНЫХ отрезка произвольной длины. Конец B' третьего отрезка соединим с точкой В, а из концов первого и второго отрезка проведем прямые, параллельные прямой BB'. Эти прямые и разделят вектор СВ на три равные части (теорема Фалеса).
Тогда вектор СЕ = (2/3)*СВ. Из конца Е вектора СЕ проведем прямую, параллельно CD. Эта прямая пересечет сторону CD в точке F. Вектор EF равен вектору CD. Тогда вектор CF = CE+EF или
CF = (2/3)*CB + CD, что и необходимо было построить.
2. Для получения вектора разности двух векторов (c) = (a-b) начала векторов соединяются и началом вектора разности (c) будет конец вектора (b) (вычитаемое), а концом - конец вектора (a) (уменьшаемое). Тогда вектор разности векторов ВА и ВС есть вектор СА.
Разделим вектор СА на 4 равных части указанным выше используя луч СA' (добавив к 3 полученным ранее равным отрезкам четвертый BA').
Тогда вектор CG = (1/4)*СА = (1/4)*(ВА - ВС), что и необходимо было построить.
Построение на рисунке.
Объяснение:
1. Сумма двух векторов: начало второго вектора совмещается с концом первого, сумма же этих векторов есть вектор с началом, совпадающим с началом первого, и концом, совпадающим с концом 2-го.
Разделим вектор CB на 3 равные части. Для этого проведем из точки С луч "n" и отложим на нем циркулем 3 РАВНЫХ отрезка произвольной длины. Конец B' третьего отрезка соединим с точкой В, а из концов первого и второго отрезка проведем прямые, параллельные прямой BB'. Эти прямые и разделят вектор СВ на три равные части (теорема Фалеса).
Тогда вектор СЕ = (2/3)*СВ. Из конца Е вектора СЕ проведем прямую, параллельно CD. Эта прямая пересечет сторону CD в точке F. Вектор EF равен вектору CD. Тогда вектор CF = CE+EF или
CF = (2/3)*CB + CD, что и необходимо было построить.
2. Для получения вектора разности двух векторов (c) = (a-b) начала векторов соединяются и началом вектора разности (c) будет конец вектора (b) (вычитаемое), а концом - конец вектора (a) (уменьшаемое). Тогда вектор разности векторов ВА и ВС есть вектор СА.
Разделим вектор СА на 4 равных части указанным выше используя луч СA' (добавив к 3 полученным ранее равным отрезкам четвертый BA').
Тогда вектор CG = (1/4)*СА = (1/4)*(ВА - ВС), что и необходимо было построить.
ответ:В треугольной пирамиде проекция бокового ребра L на основание совпадает с отрезком, равным (2/3) высоты h треугольника в основании пирамиды.
h =(3/2)* (L*cos 60°) = (3/2)*(√3*(1/2)) = 3√3/4.
Сторона а основания равна:
а = h/cos 30° = (3√3/4)/(√3/2) = 3/2.
Высота пирамиды H = L*sin 60° = √3*(√3/2) = 3/2.
Основание пирамиды вписывается в шар по окружности радиуса Ro.
Ro = (1/3)h/(sin 30°) = (1/3)*(3√3/4)/(1/2) = √3/2.
Теперь переходим к рассмотрению осевого сечения пирамиды через два боковых ребра, развёрнутых в одну плоскость.
Для шара это будет диаметральное сечение.
Радиус шара Rш = (abc)/(4S).
Здесь a и b - боковые рёбра, с - диаметр описанной около основания пирамиды окружности (с = 2Ro = √3).
Сечение S = (1/2)H*(2Ro) = (1/2)*(3/2)*√3 = 3√3/4.
Получаем Rш = (√3*√3*√3)/(4*(3√3/4)) = 1.
Объём шара V = (4/3)πR³ = (4/3)π куб
Объяснение: