Если обратить внимание на отношение сторон треугольника АВС, можно увидеть, что это - египетский треугольник. Действительно, АС=5+15=20 АВ:ВС:АС=3:4:5 Треугольник АВС - прямоугольный, его площадь найдем половиной произведения катетов:S (ABC)=AB*BC:2 S (ABC)=12*16:2=96 см² ( Можно площадь найти и по формуле Герона с тем же результатом) Отрезком ВК треугольник АВС делится на два, у которых равные высоты, опущенные на прямую АС из вершины В. Отношение площадей треугольников с равными высотами равно отношению сторон, к которым эти высоты проведены. Сумма площадей треугольника АВК и ВКС равна 96см², и эти площади относятся как 5:15 S (ABK):S (BKC)= 5:15 Пусть коэффициент отношения будет х S (ABK)+S (BKC)= 5х+15х=20х 20х=96 см² х=4,8 см² S (ABK)=4,8*5=24 см² S (BKC)=4,8*15=72 см²
Дано: h=8 см. а=120' b=30' Найти: а) S_1 б) S_2 Решение: Рассмотрим отдельно осевое сечение - это равнобедренный треугольник с основанием, равным диаметру окружности в основании конуса. Высота, опущенная к основанию треугольника, равна высоте конуса, она разбивает этот треугольник на 2 равных прямоугольных треугольника, у которых гипотенуза равна образующей - L, один из катетов равен радиусу окружности - r, другой катет - высоте h. Для простоты назовём осевое сечение треуг. ABC, а высоту - AO. Т.к. треуг. ABC - равнобедренный с основанием BC(BC=d), то AO - высота, медиана и биссектриса. Значит угол <BAO=0.5*<BAC=0.5*a=60'. cos60' = AO/AB - - - AB=AO/cos60'=8/0.5=16см. S_1=0,5L*L*sinb (Т.к. сечение - треугольник, вычисляется по формуле - половина произведения 2-х сторон на синус угла между ними), S_1=0.5*16*16*sin30' = 16*16*0.5*0.5=64см^2.
sin<BAO=BO/AB - - - - BO=r=AB*sin<BAO=16*sin60'=8√3 см. S_2=πrl=16*8√3*π=128π√3см^2.
Действительно, АС=5+15=20
АВ:ВС:АС=3:4:5
Треугольник АВС - прямоугольный, его площадь найдем половиной произведения катетов:S (ABC)=AB*BC:2
S (ABC)=12*16:2=96 см² ( Можно площадь найти и по формуле Герона с тем же результатом)
Отрезком ВК треугольник АВС делится на два, у которых равные высоты, опущенные на прямую АС из вершины В.
Отношение площадей треугольников с равными высотами равно отношению сторон, к которым эти высоты проведены.
Сумма площадей треугольника АВК и ВКС равна 96см², и эти площади относятся как 5:15
S (ABK):S (BKC)= 5:15
Пусть коэффициент отношения будет х
S (ABK)+S (BKC)= 5х+15х=20х
20х=96 см²
х=4,8 см²
S (ABK)=4,8*5=24 см²
S (BKC)=4,8*15=72 см²
h=8 см.
а=120'
b=30'
Найти: а) S_1
б) S_2
Решение:
Рассмотрим отдельно осевое сечение - это равнобедренный треугольник с основанием, равным диаметру окружности в основании конуса. Высота, опущенная к основанию треугольника, равна высоте конуса, она разбивает этот треугольник на 2 равных прямоугольных треугольника, у которых гипотенуза равна образующей - L, один из катетов равен радиусу окружности - r, другой катет - высоте h.
Для простоты назовём осевое сечение треуг. ABC, а высоту - AO. Т.к. треуг. ABC - равнобедренный с основанием BC(BC=d), то AO - высота, медиана и биссектриса.
Значит угол <BAO=0.5*<BAC=0.5*a=60'.
cos60' = AO/AB - - - AB=AO/cos60'=8/0.5=16см.
S_1=0,5L*L*sinb (Т.к. сечение - треугольник, вычисляется по формуле - половина произведения 2-х сторон на синус угла между ними),
S_1=0.5*16*16*sin30' = 16*16*0.5*0.5=64см^2.
sin<BAO=BO/AB - - - - BO=r=AB*sin<BAO=16*sin60'=8√3 см.
S_2=πrl=16*8√3*π=128π√3см^2.