Рисуем обычную треугольню пирамиду. В основании тр-к АВС и вершина Д. На середине ВД отмечаем т.М.Соединяем А и М, С и М. На середине АС ставим т. К , соединим т К и т М. Чертеж готов.В правильном тетраэдре все ребра равны, обозначим ребро "а", все грани равны.Значит, чтобы найти полную поверхность тетраэдра надо найти площадь одного тр-ка и умножить на 4. АМ и СМ- высоты равност-х тр-ков, АМ=СМ=аV3/ 2, (V-обозначение корня), МК-высота равноб-го тр-ка АМС(и медиана), из тр-ка АМК АК=а/2 КМ^2=AM^2-AK^2=3a^2/4-a^2/4=2a^2 /4, KM=aV2 /2, S(AMC)=1/2*a*aV2 /2, 9=a^2 /4, a^2=36, a=6/
S(ABC)=1/2*6*6*sin60=18*V3 /2=9V3, тогда S(полной пов-ти)=4*9V3=36V3
Рисуем обычную треугольню пирамиду. В основании тр-к АВС и вершина Д. На середине ВД отмечаем т.М.Соединяем А и М, С и М. На середине АС ставим т. К , соединим т К и т М. Чертеж готов.В правильном тетраэдре все ребра равны, обозначим ребро "а", все грани равны.Значит, чтобы найти полную поверхность тетраэдра надо найти площадь одного тр-ка и умножить на 4. АМ и СМ- высоты равност-х тр-ков, АМ=СМ=аV3/ 2, (V-обозначение корня), МК-высота равноб-го тр-ка АМС(и медиана), из тр-ка АМК АК=а/2 КМ^2=AM^2-AK^2=3a^2/4-a^2/4=2a^2 /4, KM=aV2 /2, S(AMC)=1/2*a*aV2 /2, 9=a^2 /4, a^2=36, a=6/
S(ABC)=1/2*6*6*sin60=18*V3 /2=9V3, тогда S(полной пов-ти)=4*9V3=36V3
Для равенства этих треугольников не нужны углы.
Рассмотрим треугольники АКN и ВКN:
КN - общая
АК=КВ и АN=ВN - по условию
Следовательно, треугольники равны по трем сторонам.
Может нужно равенство треугольников АКВ и АNВ?
Так как АК=ВК, то треуг АВК равнобедренный. Значит у него углы при основании равны: угол 1 = углу 3
Аналогично, AN=BN, значит угол 2 равен углу 2.
угол 1=углу 2 по условию, значит угол1=углу2=углу3=углу4.
Рассмотрим треугольники АВК и АВN:
АВ - общая сторона
угол1=углу 2, угол3=углу 4
Треугольники равны по стороне и прилежащим к ней углам.