1. Рассмотрим осевое сечение конуса - треугольник АВС, он правильный. У правильного треугольника высота опущенная из точки В на сторону АС будет его медианой и биссектрисой. А если так то угол АВД=углу ДВС. Угол АВД = 30 градусов. 2. Рассмотрим треугольник ВБС. Угол Д равен 90 градусов, потому что ВД высота. Треугольник ВБС прямоугольный. За теоремой косинусов находим сторону треугольника АВС. cos углаДВС=ВД/ВС. ВС=ВД/cos углаДБС. 3. Площадь треугольника равна половине площади прямоугольника. S=(АС*ВД)/2
Пусть большая сторона равна а, а меньшая равна b. Тогда периметр параллелограмма равен: P = 112 = 2a + 2b Площадь параллелограмма можно считать по любой стороне. Если считаем по большей, то она равна: S = a*12 А если считать по меньшей, то она равна: S = b*30 И в том, и в другом случае результат одинаков, т. е.: a*12 = b*30 Вспомним про предыдущее уравнение: 112 = 2a + 2b Получим два уравнения с двумя неизвестными. Выразим а в последнем уравнении и подставим в первое: a = 56 - b 12*(56 - b) = 30*b 672 - 12b = 30b 672 = 42b b = 16 Ну а теперь найдем площадь: S = 30*b = 30*16 = 480 см. У меня в учебнике наподобие твоей. Это как образец.
2. Рассмотрим треугольник ВБС. Угол Д равен 90 градусов, потому что ВД высота. Треугольник ВБС прямоугольный. За теоремой косинусов находим сторону треугольника АВС.
cos углаДВС=ВД/ВС. ВС=ВД/cos углаДБС.
3. Площадь треугольника равна половине площади прямоугольника.
S=(АС*ВД)/2