Косинус острого угла прямоугольного треугольника равен отношению прилежащего катета к гипотенузе.
cosB = BC/AB = 30/50 = 6/10 = 0,6
Тангенс острого угла прямоугольного треугольника равен отношению противолежащего катета к прилежащему катету.
tgB = AC/BC = 40/30 = 4/3
ответ: sinB = 0,8; cosB = 0,6; tgB = 4/3.
laminiaduo7 и 4 других пользователей посчитали ответ полезным!
2
5,0
(2 оценки)
Остались вопросы?
НАЙДИ НУЖНЫЙ
ЗАДАЙ ВОПРОС
Новые вопросы в Геометрия
В прямоугольном треугольнике гипотенуза bc=50 катет ac=40 найдите площадь треугольника
точки М,N,K ділять коло на три дуги градусні міри яких відносяться як 3:4:4 знайти кути трикутника MNK
Скласти рівняння кола з центром О(-4; 7) і радіусом 4. A) (x — 4)2 + (у +7)2 = 4; Б) (х + 4)2 + (у – 7)2 = 16; В) (x+4)2 + (у – 7)2 = 4; Г) (x — 4)2 +…
доказать равенство треугольников
Основа рівнобедреного трикутника 18 см . Знайдіть довжину відрізка , що сполучає середину бічних сторін трикутника
Відрізок, що сполучає середини бічних сторін рівнобедреного трикутника, дорівнює 9 см. Знайдіть основу трикутника. до іть будь ласка
дано: треугольник ABC BD-медиана BD=DE AB=5,8 см BC=7,4 см AC=9 см надо найти CE
Основи трапеції дорівнюють 18 см і 6 см. Середня лінія поділяється діагоналями на три частини. Знайдіть їхні довжини. до іть будь ласка
4) В равнобедренном треугольнике АВС с основанием ВС проведена медиана АМ. Периметр треугольника АВС равен 32 см, а периметр треугольника АВМ равен 24…
Если вершины треугольника заданы, как точки в прямоугольной декартовой системе координат: A1(x1,y1), A2(x2,y2), A3(x3,y3), то площадь такого треугольника можно вычислить по формуле определителя второго порядка:
Синус острого угла прямоугольного треугольника равен отношению противолежащего катета к гипотенузе.
sinB = AC/AB = 40/50 = 8/10 = 0,8
Квадрат гипотенузы равен сумме квадратов катетов (т. Пифагора).
AB² = AC²+BC² ⇒ BC² = AB²-AC²
По формуле разности квадратов:
BC² = (AB-AC)(AB+AC) = (50-40)(50+40) = 10·90 = 10²·3²
BC = 10·3 = 30
Косинус острого угла прямоугольного треугольника равен отношению прилежащего катета к гипотенузе.
cosB = BC/AB = 30/50 = 6/10 = 0,6
Тангенс острого угла прямоугольного треугольника равен отношению противолежащего катета к прилежащему катету.
tgB = AC/BC = 40/30 = 4/3
ответ: sinB = 0,8; cosB = 0,6; tgB = 4/3.
laminiaduo7 и 4 других пользователей посчитали ответ полезным!
2
5,0
(2 оценки)
Остались вопросы?
НАЙДИ НУЖНЫЙ
ЗАДАЙ ВОПРОС
Новые вопросы в Геометрия
В прямоугольном треугольнике гипотенуза bc=50 катет ac=40 найдите площадь треугольника
точки М,N,K ділять коло на три дуги градусні міри яких відносяться як 3:4:4 знайти кути трикутника MNK
Скласти рівняння кола з центром О(-4; 7) і радіусом 4. A) (x — 4)2 + (у +7)2 = 4; Б) (х + 4)2 + (у – 7)2 = 16; В) (x+4)2 + (у – 7)2 = 4; Г) (x — 4)2 +…
доказать равенство треугольников
Основа рівнобедреного трикутника 18 см . Знайдіть довжину відрізка , що сполучає середину бічних сторін трикутника
Відрізок, що сполучає середини бічних сторін рівнобедреного трикутника, дорівнює 9 см. Знайдіть основу трикутника. до іть будь ласка
дано: треугольник ABC BD-медиана BD=DE AB=5,8 см BC=7,4 см AC=9 см надо найти CE
Основи трапеції дорівнюють 18 см і 6 см. Середня лінія поділяється діагоналями на три частини. Знайдіть їхні довжини. до іть будь ласка
4) В равнобедренном треугольнике АВС с основанием ВС проведена медиана АМ. Периметр треугольника АВС равен 32 см, а периметр треугольника АВМ равен 24…
Объяснение:
Даны вершины треугольника A(−2,1), B(3,3), С(1,0). Найти:
а) длина стороны AB = √((3-(-2))² + (3-1)² = √(25 + 4) = √29.
б) уравнение медианы BM.
Находим координаты точки М как середины стороны АС.
М(((-2+1)/2; (1+3)/2) = (-0,5; 2).
Вектор ВМ = ((-0,5-3); (2-3)) = (-3,5; -1).
Уравнение ВМ: (х – 3)/(-3,5) = (у – 3)/(-1). Это в каноническом виде.
Оно же в общем виде 7у – 2х – 15 = 0.
И в виде уравнения с угловым коэффициентом у = (2/7)х + (15/7).
в) cos угла BCA.
Вектор СВ = ((1-3); (0-3)) = (-2; -3). Модуль равен √(4 + 9) = √13.
Вектор СА = ((1-(-2)); (0-1)) = (3; -1). Модуль равен √(9 + 1) = √10.
cos(BCA) = (-2*3 + (-3)*(-1))/( √13*√10) = -3/√130 ≈ -0,26312.
г) уравнение высоты CD.
Находим уравнение стороны АВ.
Вектор AB = ((3-(-2)); (3-1)) = (5; 2).
Уравнение АВ: (х + 2)/5 = (у -1)/2 или у = (2/5)х + (9/5).
Угловой коэффициент перпендикуляра к АВ (это высота СD) равен -1/(2/5) = -5/2. Подставим координаты точки С.
0 = (-5/2)*1 + b. Отсюда b = 5/2.
Уравнение CD: y = (-5/2)x + (5/2).
д) длина высоты СD.
Для вычисления расстояния от точки M(Mx; My) до прямой Ax + By + C = 0 используем формулу:
d = (A·Mx + B·My + C)/√A2 + B2
Подставим в формулу данные: координаты точки С(1; 0) и уравнение прямой АВ:
2х – 5у + 9 = 0.
d = (2·1 + (-5)·0 + 9)/√22 + (-5)2 = (2 + 0 + 9)/√4 + 25 =
= 11/√29 = 11√29/29 ≈ 2.0426487.
е) площадь треугольника АВС по векторам.
Если вершины треугольника заданы, как точки в прямоугольной декартовой системе координат: A1(x1,y1), A2(x2,y2), A3(x3,y3), то площадь такого треугольника можно вычислить по формуле определителя второго порядка:
S= ± (1 /2) *(x1−x3 y1−y3 )
(x2−x3 y2−y3 )
x1−x3 y1−y3
x2−x3 y2−y3
A(−2,1), B(3,3), С(1,0).
S = (1/2)}|((-2-1)*(3-0) – (1-0)*3-1))| = (1/2)*|(-9-2)| = 11/2 = 5,5 кв.ед.