Дано :
Четырёхугольник ABCD — трапеция.
AM = BM, CN = DN.
BC = 6, AD = 16.
Найти :
x : y = ?
Так как MN соединяет середины боковых сторон трапеции, то MN — средняя линия трапеции (по определению).
Следовательно, MN||BC||AD.
Рассмотрим ∆АВС.
МК||ВС (так как МК лежит на MN) и АМ = ВМ (по условию). Тогда по признаку средней линии треугольника. МК — средняя линия ∆АВС.
Следовательно, МК = ½ВС = ½*6 = 3.
Рассмотрим ∆ACD.
Аналогично и с KN.
KN = ½AD = ½*16 = 8.
Тогда x : y = 3 : 8.
3 : 8.
Найдите углы равнобедренного треугольника, если один из его углов в пять раз меньше суммы двух других.
============================================================
Дано :
Четырёхугольник ABCD — трапеция.
AM = BM, CN = DN.
BC = 6, AD = 16.
Найти :
x : y = ?
Так как MN соединяет середины боковых сторон трапеции, то MN — средняя линия трапеции (по определению).
Средняя линия трапеции параллельна её основаниям.Следовательно, MN||BC||AD.
Рассмотрим ∆АВС.
МК||ВС (так как МК лежит на MN) и АМ = ВМ (по условию). Тогда по признаку средней линии треугольника. МК — средняя линия ∆АВС.
Средняя линия треугольника равна половине стороны, которой она параллельна.Следовательно, МК = ½ВС = ½*6 = 3.
Рассмотрим ∆ACD.
Аналогично и с KN.
KN = ½AD = ½*16 = 8.
Тогда x : y = 3 : 8.
3 : 8.
Найдите углы равнобедренного треугольника, если один из его углов в пять раз меньше суммы двух других.
============================================================
Пусть ∠А = ∠С = х , ∠В = у, тогдаРассмотрим 2 случая решения данной задачи:Первый случай:∠В = ( ∠А + ∠С )/5у = 2х/5Сумма всех углов в треугольнике составляет 180° ⇒∠А + ∠В + ∠С = 180°х + 2х/5 + х = 18х°12х/5 = 180°х = 75°Значит, ∠А = ∠С = 75° , ∠В = 30°Второй случай:∠А = ( ∠В + ∠С )/5х = ( у + х )/55х = у + ху = 4хСумма всех углов в треугольнике составляет 180° ⇒∠А + ∠В + ∠С = 180х + 4х + х = 180°6х = 180°х = 30°Значит, ∠А = ∠С = 30° , ∠В = 120°ОТВЕТ: 30°, 75°, 75° ИЛИ 30°, 30°, 120°