Как известно, площадь треугольника можно вычислить в данном случае по формуле S=AB*h/2, где h - высота, проведенная к АВ. (1) Можно вычислить и по-другому. S=BC*H/2, где H - высота, проведенная к ВС. H надо найти. (2) Теперь приравняем правые части формул (1) и (2) AB*h/2=BC*H/2 Умножим обе части на 2, получимAB*h=BC*H (3)По условию задачи АВ=16 см, ВС=22 см, h=11 см. Подставим все это в формулу (3)16*11=22*НСократим обе части на 1116=2*НСократим обе части на 2Н=8.ответ: Н=8 см- высота, проведенная к стороне ВС
Объяснение: нехай точка перетину сторін АЕ и СД умовно позначемо О. Розглянемо ∆ЕСО. В ньому відомо 2 кути и ми знайдемо ОЕС, якщо сума всіх кутів трикутника дорівнює 180°.
Кут ОЕС=180-25-35=120°. Тепер знайдемо суміжний з ним кут ВЕО.
Якщо сума суміжних кутів дорівнює 180°, тоді кут ВЕО=180-120=60°.
Кут ВЕО=60°
Розглянемо ∆ДАО. В ньому кутА=16° за умовою, а кут АОД=кутуЕОС=35° як протилежні між перехресними прямими. Тоді знайдемо кут АДО:
Кут АДО=180-35-16=129°
Тепер знайдемо суміжний з ним кут ВДО. Кут ВДО=180-129=51°
Кут ВДО=51°
Якщо кути АОД = ЕОС=35°, то
кут ДОЕ=(360-35×2)/2=290÷2=145°
Кут ДОЕ=145°.
Розглянемо чотирикутник ДВЕО. В ньому відомо 3 кути, і тепер знайдемо кут В, якщо сума кутів чотирикутника дорівнює 360°
ответ: 104°
Объяснение: нехай точка перетину сторін АЕ и СД умовно позначемо О. Розглянемо ∆ЕСО. В ньому відомо 2 кути и ми знайдемо ОЕС, якщо сума всіх кутів трикутника дорівнює 180°.
Кут ОЕС=180-25-35=120°. Тепер знайдемо суміжний з ним кут ВЕО.
Якщо сума суміжних кутів дорівнює 180°, тоді кут ВЕО=180-120=60°.
Кут ВЕО=60°
Розглянемо ∆ДАО. В ньому кутА=16° за умовою, а кут АОД=кутуЕОС=35° як протилежні між перехресними прямими. Тоді знайдемо кут АДО:
Кут АДО=180-35-16=129°
Тепер знайдемо суміжний з ним кут ВДО. Кут ВДО=180-129=51°
Кут ВДО=51°
Якщо кути АОД = ЕОС=35°, то
кут ДОЕ=(360-35×2)/2=290÷2=145°
Кут ДОЕ=145°.
Розглянемо чотирикутник ДВЕО. В ньому відомо 3 кути, і тепер знайдемо кут В, якщо сума кутів чотирикутника дорівнює 360°
Кут В=360-145-51-60= 104°