Точки пересечения окружности с прямой 4х + 3y — 18 = 0 имеют координаты (0; 6) и (6; -2)
Точки пересечения окружности с прямой 3х – 4у – 1 = 0 имеют координаты (-1; -1) и (7; 5)
Объяснение:
Задача:
Центр окружности с радиусом 5 находится в точке пересечения прямых 4х + 3y - 18 = 0 и 3х - 4у - 1 = 0. В каких точках этот круг пересекает данные прямые?
Найдём точку пересечения прямых
4х + 3y - 18 = 0 | ·3 4х + 3y - 18 = 0 | ·4
3х - 4у - 1 = 0 |· 4 3х - 4у - 1 = 0 |· 3
12x + 9y - 54 = 0 16x + 12y + 72 = 0
12x - 16y - 4 = 0 9x - 12y -3 = 0
25y - 50 = 0 ⇒ y = 2 25x + 75 = 0 ⇒ x = 3
Итак. центр окружности находится в точке с координатами (3; 2)
18,09
Объяснение:
1) АВ = 1 + 2 + 3 = 6
ВС = 3 + 1 + 2 = 6
СD = 2 + 3 + 1 = 6
AD = 1 + 4 + 1 = 6
Так как все стороны четырёхугольника равны, то данная фигура является ромбом.
2) Находим площадь ромба:
S = DC · BC · sin 60° = 6 · 6 · √3/2 = 18√3
3) Чтобы найти площадь заштрихованной фигуры, необходимо от площади ромба отнять площади 4-х не заштрихованных фигур.
А для этого надо знать все углы ромба.
∠А = ∠С = 60° - так как противоположные углы ромба равны;
∠D = ∠B = 180° - 60° = 120° - так как сумма углов, прилежащих к одной стороне ромба, равна 180°.
4) Площадь сегмента при вершине А равна:
π · 1² · (60°/360°) = π/6.
5) Площадь сегмента при вершине В равна:
π · 3² · (120°/360°) = 9π/3 = 3π.
6) Площадь сегмента при вершине С равна:
π · 2² · (60°/360°) = 4π/6 = 2π/3.
7) Площадь сегмента при вершине D равна:
π · 1² · (120°/360°) = π/3.
8) Сумма площадей вычитаемых сегментов равна:
π/6 + 3π + 2π/3 + π/3 = (4 1/6)π
9) Площадь заштрихованной фигуры:
18√3 - (4 1/6)π = 18 (√3 - 25π/108) ≈ 18 · (1,732 - 25/6 · 3,14) ≈ 18,093 ≈ 18,09
ответ: 18 (√3 - 25π/108) ≈ 18,09
Точки пересечения окружности с прямой 4х + 3y — 18 = 0 имеют координаты (0; 6) и (6; -2)
Точки пересечения окружности с прямой 3х – 4у – 1 = 0 имеют координаты (-1; -1) и (7; 5)
Объяснение:
Задача:
Центр окружности с радиусом 5 находится в точке пересечения прямых 4х + 3y - 18 = 0 и 3х - 4у - 1 = 0. В каких точках этот круг пересекает данные прямые?
Найдём точку пересечения прямых
4х + 3y - 18 = 0 | ·3 4х + 3y - 18 = 0 | ·4
3х - 4у - 1 = 0 |· 4 3х - 4у - 1 = 0 |· 3
12x + 9y - 54 = 0 16x + 12y + 72 = 0
12x - 16y - 4 = 0 9x - 12y -3 = 0
25y - 50 = 0 ⇒ y = 2 25x + 75 = 0 ⇒ x = 3
Итак. центр окружности находится в точке с координатами (3; 2)
Тогда уравнение окружности
(х - 3)² + (у - 2)² = 25 (1)
Найдём точки пересечения окружности с прямой
4х + 3у - 18 = 0
или
у = -4х/3 + 6
Подставим в (1)
(х - 3)² + (-4х/3 + 4)² = 25
х² - 6х + 9 + 16х²/9 - 32х/3 + 16 = 25
9х² - 54х + 81 + 16х² - 96х + 144 = 225
25х² - 150х =0
х² - 6х = 0
х₁ = 0; х₂ = 6;
из уравнения у = -4х/3 + 6 получаем
y₁ = 6; y₂ = -2;
Найдём точки пересечения окружности с прямой
3х – 4у – 1 = 0
или
у = 3х/4 - 1/4
Подставим в (1)
(х - 3)² + (3х/4 - 9/4)² = 25
х² - 6х + 9 + 9х²/16 - 54х/16 + 81/16 = 25
16х² - 96х + 144 + 9х² - 54х + 81 = 400
25х² - 150х - 175 =0
x² - 6x - 7 = 0
D = 6² + 4 · 7 = 64 = 8²
х₁ = 0.5 · (6 - 8) = -1 x₂ = 0.5 · (6 + 8) = 7
Из уравнения у = 3х/4 - 1/4 получаем
y₁ = -1; y₂ = 5