В1: с=5, a=3 По теореме Пифагора c2=a2+b2 откуда b2=c2-a2=25-9=16 или b=4 Периметр Р=3+4+5=12 В2: S=1/2a*b=1/2*3*4=6 B3: sin=b/c=4/5=0,8 В4: центр вписанной окружности лежит на пересечении биссектрис треугольника. R=1 B5: Медиана будет равна половине гипотенузы, поскольку получается равнобедренный треугольник. В6: S1=1/2a*h1=1/2*3*2=3 S2=1/2b*h2=1/2*4*1,5=3 B7: синус угла, которого мы уже искали в В3 равен 0,8. Тогда в треугольнике с высотой h тот же угол: sin=h/a, откуда h=sin*a=0,8*3=2,4. В8: обозначим основание меньшего треугольника х, большего – у. высота у них h. Рассмотрим подобие треугольников abc и axh (подобны по двум углам и стороне а между ними). Отношение x/a=h/b, откуда x=h/b*a=2,4/4*3=1,8 Площадь меньшего меньшего треугольника: S=1/2x*h=1/2*1,8*2,4=2,16 Рассмотрим подобие треугольников abc и byh (подобны по двум углам и стороне а между ними). Отношение h/a=y/b, откуда y=h/a*b=2,4/3*4=3,2 Площадь большего треугольника: S=1/2y*h=1/2*3,2*2,4=3,84
И так, начнём. Равнобедренный треугольник - треугольник, у которого две стороны равны, а третья является основанием. И так. Представим треугольник. Условного назовём его АБС. Дано: Pабс = 44 см Боковая сторона - х+4 (так как она больше основания на 4 см, т.е. основание х) Основание - х. Решение: 1) Равнобедренный треугольник - треугольник, у которого две стороны равны. Две боковые стороны будут равны: x+4+x+4+x=44 3х=44-4-4 3х=36 х=36:3 х=12
2) 12 см - основание треугольника. Боковая сторона 1 = 12 (х) + 4 = 16 см - первая боковая сторона. Боковая сторона 1 = 12 (х) + 4 = 16 см - вторая боковая сторона. ответ: 12 см; 16 см; 16 см.
Дано:
Pабс = 44 см
Боковая сторона - х+4 (так как она больше основания на 4 см, т.е. основание х)
Основание - х.
Решение:
1) Равнобедренный треугольник - треугольник, у которого две стороны равны. Две боковые стороны будут равны: x+4+x+4+x=44
3х=44-4-4
3х=36
х=36:3
х=12
2) 12 см - основание треугольника.
Боковая сторона 1 = 12 (х) + 4 = 16 см - первая боковая сторона.
Боковая сторона 1 = 12 (х) + 4 = 16 см - вторая боковая сторона.
ответ: 12 см; 16 см; 16 см.