8 клас, геометрия 7. Чотирикутник МКСД вписано в коло, кут КМС= 47', кутДКС=28', кутМДК=16'. Знайдіть кути чотирикутника. 8. У рівнобічній трапеції основи 13 см і 37 см. Діагональ є бісектрисою гострого кута. Знайдіть площу трапеції.
В параллелепипеде 6 граней, - по две противоположных, которые попарно равны между собой. Естественно, их диагонали также равны. В каждой вершине параллелепипеда сходятся смежные стороны трех граней, и их диагонали образуют треугольник. (см. рисунок вложения) В данном случае диагонали равны 30, 40 и 70 см. По теореме о неравенстве треугольников: длина любой стороны треугольника меньше суммы длин двух других сторон. Здесь имеем "треугольник" и три длины, и 70=30+40. Тогда меньшие стороны "лягут" на большую, и треугольник не получится, как и параллелепипед с такими диагоналями граней. Не могут диагонали трех граней прямоугольного параллелепипеда иметь длины 30 см, 40 см и 70 см.
Докажем, что прямые CD и AD пересекают β. Действительно, прямая CD имеет общую точку D с плоскостью β, значит, либо CD пересекает β, либо CD лежит в β. Если прямая CD лежит в β, то точка C также лежит в β, что противоречит условию. Значит, прямая CD пересекает β. Аналогично, прямая AD имеет общую точку D с плоскостью β, но точка A не лежит в β, значит, AD пересекает β.
Известно, что если одна из двух параллельных прямых пересекает плоскость, то и другая пересекает эту плоскость. Прямая CD пересекает β, прямая AB параллельна CD, значит, прямая AB также пересекает β. Аналогично, прямая AD пересекает β, прямая BC параллельна AD, значит, прямая BC также пересекает β.
В каждой вершине параллелепипеда сходятся смежные стороны трех граней, и их диагонали образуют треугольник. (см. рисунок вложения)
В данном случае диагонали равны 30, 40 и 70 см.
По теореме о неравенстве треугольников: длина любой стороны треугольника меньше суммы длин двух других сторон.
Здесь имеем "треугольник" и три длины, и 70=30+40.
Тогда меньшие стороны "лягут" на большую, и треугольник не получится, как и параллелепипед с такими диагоналями граней.
Не могут диагонали трех граней прямоугольного параллелепипеда иметь длины 30 см, 40 см и 70 см.
Известно, что если одна из двух параллельных прямых пересекает плоскость, то и другая пересекает эту плоскость. Прямая CD пересекает β, прямая AB параллельна CD, значит, прямая AB также пересекает β. Аналогично, прямая AD пересекает β, прямая BC параллельна AD, значит, прямая BC также пересекает β.