Если все двугранные углы при основании равны 60°, то проекция высоты боковой грани на основание - это радиус вписанной в основание окружности, равный половине высоты h ромба.
h = a*sin30° = 20*(1/2) = 10 см, тогда h/2 = 10/2 = 5 см.
Находим высоту боковой грани:
hгр = (h/2)/cos 60° = 5/(1/2) = 10 см.
Sбок = (1/2)*Р*hгр = (1/2)*(4*20)*10 = 400 см²
Высота пирамиды равна:
H = (h/2)*tg 60° = 5√3 см.
как я понял но не знаю правильный ли этот ответ если неправильный то поправьте.
Объяснение: Через две пересекающиеся прямые AC и BD проведём плоскость АВСD. Четырёхугольник ABCD лежит в одной плоскости, так как две пересекающиеся прямые АС и BD определяют единственную плоскость. Если две параллельные плоскости пересекаются третьей, то прямые пересечения параллельны⇒ АВ ║CD. Тогда треугольникм АКВ и CKD подобны по двум углам (имеем даже три равных угла - <CKD=<AKB как вертикальные, а <BAC(BAK)=<ACD(KCD) и <ABD(ABK)=<BDC(KDC) как накрест лежащие при параллельных AB и CD и секущих АС и BD соответственно). Коэффициент подобия равен k=AB/CD=1/2. Из подобия имеем: KB/KD=1/2 => KD=KB*2 = 10см.
Высота пирамиды равна:
H = (h/2)*tg 60° = 5√3 см.
Объяснение:
Если все двугранные углы при основании равны 60°, то проекция высоты боковой грани на основание - это радиус вписанной в основание окружности, равный половине высоты h ромба.
h = a*sin30° = 20*(1/2) = 10 см, тогда h/2 = 10/2 = 5 см.
Находим высоту боковой грани:
hгр = (h/2)/cos 60° = 5/(1/2) = 10 см.
Sбок = (1/2)*Р*hгр = (1/2)*(4*20)*10 = 400 см²
Высота пирамиды равна:
H = (h/2)*tg 60° = 5√3 см.
как я понял но не знаю правильный ли этот ответ если неправильный то поправьте.
Объяснение: Через две пересекающиеся прямые AC и BD проведём плоскость АВСD. Четырёхугольник ABCD лежит в одной плоскости, так как две пересекающиеся прямые АС и BD определяют единственную плоскость. Если две параллельные плоскости пересекаются третьей, то прямые пересечения параллельны⇒ АВ ║CD. Тогда треугольникм АКВ и CKD подобны по двум углам (имеем даже три равных угла - <CKD=<AKB как вертикальные, а <BAC(BAK)=<ACD(KCD) и <ABD(ABK)=<BDC(KDC) как накрест лежащие при параллельных AB и CD и секущих АС и BD соответственно). Коэффициент подобия равен k=AB/CD=1/2. Из подобия имеем: KB/KD=1/2 => KD=KB*2 = 10см.
ответ: KD=10см.