..? ?
-
8.
40. Задайте альтернативные вопросы.
($ 18, § 22)
.
Will they drink tea or coffee?
They'll drink tea. (coffee)
1.
snakes or
They'll see snakes. (crocodiles)
2.
trees or
She'll draw trees. (flowers)
Russian or
books?
We'll read Russian books. (English)
4.
hockey or
He'll play hockey. (football)
cloudy or
It will be cloudy. (sunny)
?
5.
..?
Разложение левой части уравнения на множители*
Решим уравнение
х2 + 10х - 24 = 0.
Разложим левую часть на множители:
х2 + 10х - 24 = х2 + 12х - 2х - 24 = х(х + 12) - 2(х + 12) = (х + 12)(х - 2).
Следовательно, уравнение можно переписать так:
(х + 12)(х - 2) = 0
Так как произведение равно нулю, то, по крайней мере, один из его множителей равен нулю. Поэтому левая часть уравнения обращается нуль при х = 2, а также при х = - 12. Это означает, что число 2 и - 12 являются корнями уравнения х2 + 10х - 24 = 0.
Метод выделения полного квадрата*
Решим уравнение х2 + 6х - 7 = 0.
Выделим в левой части полный квадрат.
Для этого запишем выражение х2 + 6х в следующем виде:
х2 + 6х = х2 + 2• х • 3.
В полученном выражении первое слагаемое - квадрат числа х, а второе - удвоенное произведение х на 3. По этому чтобы получить полный квадрат, нужно прибавить 32, так как
х2 + 2• х • 3 + 32 = (х + 3)2.
Преобразуем теперь левую часть уравнения
х2 + 6х - 7 = 0,
прибавляя к ней и вычитая 32. Имеем:
х2 + 6х - 7 = х2 + 2• х • 3 + 32 - 32 - 7 = (х + 3)2 - 9 - 7 = (х + 3)2 - 16.
Таким образом, данное уравнение можно записать так:
(х + 3)2 - 16 =0, (х + 3)2 = 16.
Следовательно, х + 3 - 4 = 0, х1 = 1, или х + 3 = -4, х2 = -7.
Решение квадратных уравнений по формуле*
Умножим обе части уравнения
ах2 + bх + с = 0, а ≠ 0
на 4а и последовательно имеем:
4а2х2 + 4аbх + 4ас = 0,
((2ах)2 + 2ах • b + b2) - b2 + 4ac = 0,
(2ax + b)2 = b2 - 4ac,
2ax + b = ± √ b2 - 4ac,
2ax = - b ± √ b2 - 4ac,
Решение уравнений с использованием теоремы Виета*
Как известно, приведенное квадратное уравнение имеет вид
х2 + px + c = 0. (1)
Его корни удовлетворяют теореме Виета, которая при а =1 имеет вид
x1 +x2 = - p
Отсюда можно сделать следующие выводы (по коэффициентам p и q можно предсказать знаки корней).
Объяснение:
*Примеры к
а) Решим уравнение: 4х2 + 7х + 3 = 0.
а = 4, b = 7, с = 3, D = b2 - 4ac = 72 - 4 • 4 • 3 = 49 - 48 = 1,
D > 0, два разных корня;
Таким образом, в случае положительного дискриминанта, т.е. при
b2 - 4ac >0 , уравнение ах2 + bх + с = 0 имеет два различных корня.
б) Решим уравнение: 4х2 - 4х + 1 = 0,
а = 4, b = - 4, с = 1, D = b2 - 4ac = (-4)2 - 4 • 4 • 1= 16 - 16 = 0,
D = 0, один корень;
Итак, если дискриминант равен нулю, т.е. b2 - 4ac = 0, то уравнение
ах2 + bх + с = 0 имеет единственный корень,
в) Решим уравнение: 2х2 + 3х + 4 = 0,
а = 2, b = 3, с = 4, D = b2 - 4ac = 32 - 4 • 2 • 4 = 9 - 32 = - 13 , D < 0.
Данное уравнение корней не имеет.
Итак, если дискриминант отрицателен, т.е. b2 - 4ac < 0,
уравнение ах2 + bх + с = 0 не имеет корней.
Формула (1) корней квадратного уравнения ах2 + bх + с = 0 позволяет найти корни любого квадратного уравнения (если они есть), в том числе приведенного и неполного. Словесно формула (1) выражается так: корни квадратного уравнения равны дроби, числитель которой равен второму коэффициенту, взятому с противоположным знаком, плюс минус корень квадратный из квадрата этого коэффициента без учетверенного произведения первого коэффициента на свободный член, а знаменатель есть удвоенный первый коэффициент
*Примеру к
а) Если сводный член q приведенного уравнения (1) положителен (q > 0), то уравнение имеет два одинаковых по знаку корня и это зависти от второго коэффициента p. Если р < 0, то оба корня отрицательны, если р < 0, то оба корня положительны.
Например,
x2 – 3x + 2 = 0; x1 = 2 и x2 = 1, так как q = 2 > 0 и p = - 3 < 0;
x2 + 8x + 7 = 0; x1 = - 7 и x2 = - 1, так как q = 7 > 0 и p= 8 > 0.
б) Если свободный член q приведенного уравнения (1) отрицателен (q < 0), то уравнение имеет два различных по знаку корня, причем больший по модулю корень будет положителен, если p < 0 , или отрицателен, если p > 0 .
Например,
x2 + 4x – 5 = 0; x1 = - 5 и x2 = 1, так как q= - 5 < 0 и p = 4 > 0;
x2 – 8x – 9 = 0; x1 = 9 и x2 = - 1, так как q = - 9 < 0 и p = - 8 < 0.
1. Средние линии 5см и 6,5см. АС=10см. SinA=12/13. S=60см².
2. Средние линии 6,5см и 8,45см. АС=16,9см. SinA=12/13. S=101,4см².
Объяснение:
Так как в условии явно не указано, какая из сторон является основанием, необходимо рассмотреть два варианта.
1. Если основание равнобедренного треугольника АС, боковые стороны АВ = ВС = 13см, а высота BD=12см к основанию АС, то AD=DC и по Пифагору АD = √(АВ²-BD²) = √(13²-12²) = 5см. =>
АС = 10см.
Средние линии треугольника АВС равны 5см (средняя линия, параллельная основанию) и 6,5см (средняя линия, параллельная боковой стороне).
SinA = BD/AB = 12/13.
Sabc = (1/2)*10*12 = 60см² или
Sabc = (1/2)*AB*AC*SinA = (1/2)*13*10*(12/13) = 60 см².
2. Если основание равнобедренного треугольника АВ=13см, боковые стороны АС = СВ, а высота BD=12см к боковой стороне АС, то
SinA = BD/AB = 12/13 (из прямоугольного треугольника ABD). =>
CosA = √(1 - Sin²A) = 5/13.
Проведем высоту СР к основанию АВ. Тогда АР=РВ = АВ/2 =6,5 см.
Из прямоугольного треугольнока АСР найдем АС:
АС = АР/CosA = 6,5*13/5 = 16,9см.
Sabc =(1/2)BD*AC = 101,4 см². Или
Sabc = (1/2)*AB*AC*SinA = (1/2)*13*16,9*(12/13) = 101,4 см².
Cредние линии треугольника АВС равны 6,5см (средняя линия, параллельная основанию) и 8,45см (средняя линия, параллельная боковой стороне).