-1x -1y +1 =0 или y = 1-x.
Объяснение:
Найдем уравнение прямой, проходящей через две точки по формуле:
(X - Xm)/(Xn-Xm) = (Y-Ym)/(Yn-Ym). Тогда
(X - (-1))/(0-(-1)) = (Y-2)/(1-2). =>
(X+1)/1 = (Y-2)/-1 =>
-1x -1y +1 =0 или y = 1 - x.
Второй вариант:
Уравнение прямой можно записать так:
y = kx + b.
Точки М(-1;2) и N(0;1) лежат на этой прямой. значит координаты этих точек должны удовлетворять уравнению прямой.
Подставим координаты точек в уравнение и получим:
2 = k·(-1) + b. (1)
1 = k·(0) + b. (2) Из (2) получаем значение: b =1.
Подставим b в (1) и получим k = -1.
Тогда наше уравнение примет вид:
y = -x + 1 или
-1x - 1y + 1 = 0.
Радиус описанной окружности прямоугольного треугольника равен половине гипотенузы. Данный треугольник Пифагоров и гипотенуза равна 5см.
Точка М - центр описанной окружности.
Точка О - центр вписанной окружности.
Тогда R=2,5см, то есть ВМ=2,5см.
Радиус вписанной окружности равен по формуле:
r=(AC+BC-АВ)/2 = 2/2=1см.
Итак, СН=r=1см => HB=3-1=2см.
PB=HB=2см (касательные из одной точки).
Тогда МР=2,5-2=0,5см. В прямоугольном треугольнике ОМР по Пифагору:
ОМ=√(1²+0,5²)= √1,25 ≈ 1,118 ≈ 1,12см .
ответ: расстояние между центрами окружностей равно
√1,25 ≈ 1,12 см.
Или так: по теореме Эйлера в треугольнике расстояние между центрами вписанной и описанной окружностей находится по формуле:
d² = R² - 2·R·r.
В нашем случае R = 2,5см, а r = 1cм.
тогда d = √(2,5² -2·2,5) = √(2,5·0,5) = √1,25 ≈ 1,12 см.
-1x -1y +1 =0 или y = 1-x.
Объяснение:
Найдем уравнение прямой, проходящей через две точки по формуле:
(X - Xm)/(Xn-Xm) = (Y-Ym)/(Yn-Ym). Тогда
(X - (-1))/(0-(-1)) = (Y-2)/(1-2). =>
(X+1)/1 = (Y-2)/-1 =>
-1x -1y +1 =0 или y = 1 - x.
Второй вариант:
Уравнение прямой можно записать так:
y = kx + b.
Точки М(-1;2) и N(0;1) лежат на этой прямой. значит координаты этих точек должны удовлетворять уравнению прямой.
Подставим координаты точек в уравнение и получим:
2 = k·(-1) + b. (1)
1 = k·(0) + b. (2) Из (2) получаем значение: b =1.
Подставим b в (1) и получим k = -1.
Тогда наше уравнение примет вид:
y = -x + 1 или
-1x - 1y + 1 = 0.
Радиус описанной окружности прямоугольного треугольника равен половине гипотенузы. Данный треугольник Пифагоров и гипотенуза равна 5см.
Точка М - центр описанной окружности.
Точка О - центр вписанной окружности.
Тогда R=2,5см, то есть ВМ=2,5см.
Радиус вписанной окружности равен по формуле:
r=(AC+BC-АВ)/2 = 2/2=1см.
Итак, СН=r=1см => HB=3-1=2см.
PB=HB=2см (касательные из одной точки).
Тогда МР=2,5-2=0,5см. В прямоугольном треугольнике ОМР по Пифагору:
ОМ=√(1²+0,5²)= √1,25 ≈ 1,118 ≈ 1,12см .
ответ: расстояние между центрами окружностей равно
√1,25 ≈ 1,12 см.
Или так: по теореме Эйлера в треугольнике расстояние между центрами вписанной и описанной окружностей находится по формуле:
d² = R² - 2·R·r.
В нашем случае R = 2,5см, а r = 1cм.
тогда d = √(2,5² -2·2,5) = √(2,5·0,5) = √1,25 ≈ 1,12 см.