В правильном тетраэдре все ребра равны, а грани - правильные треугольники.
Центры граней - точки пересечения медиан (высот, биссектрис).
Привяжем систему прямоугольных координат к вершине А и найдем координаты нужных нам для решения точек учитывая, что высота правильного треугольника равна h=(√3/2)*а, высота правильного тетраэдра равна H=√(2/3)*а, медианы в точке пересечения делятся в отношении 2/3, считая от вершины, <BAC=60° => <BAH=30°,
<YpAH = 60°. Тогда
А(0;0;0).
Q(a/2;(√3/6)а;0) - так как Хq = Xp = a/2, Yq = (2/3)*h*Cos60.
М(a/4;√3a/12;(√(2/3))*а/2) - так как Xm = Xq/2, Ym = Yq/2, Zm =H/2 - из подобия треугольников).
P(a/2;(√3/3)*а;(√(2/3))*а/2) - так как Xp=Xq, Yp=(2/3)*h, Zp=Zm.
N(2a/3 ;(2√3/9)a;√(2/3))*а/3)- так как Xn=Xq+(2/3)*(1/3)*h*Cos30, Yn=Yq+(2/3)*(1/3)*h*Cos60, Zn=(1/3)*H.
Пусть дана правильная треугольная пирамида SABC. Центр основания - точка О пересечения медиан треугольника основания. В боковой грани SСB проведём апофему SД. Тогда двугранный угол наклона боковой грани к основанию измеряется плоским углом SДО. Расстояние от центра основания до боковой грани - это перпендикуляр ОК на апофему SД. Высота пирамиды SО = Н = 2/sin(90°-60°) = 2/0,5 = 4 см. Отрезок ОД = 2/sin60° = 2*2/√3 = 4/√3 см. Медиана основания АД (она же и высота и биссектриса угла основания) равна трём отрезкам ОД по свойству медиан. АД = 3*(4/√3) = 12/√3 = 4√3 см. Сторона основания а = АД/cos30° = (4√3)/(√3/2) = 8 см. Периметр основания Р = 3а = 3*8 = 24 см. Апофема А = Н/sin60° = 4/(√3/2) = 8/√3 см. Боковая поверхность пирамиды равна: Sбок = (1/2)Р*А = (1/2)*24*(8/√3) = 96/√3 = 32√3 см².
Cosα = 2/9, α ≈ 77,1°
Объяснение:
В правильном тетраэдре все ребра равны, а грани - правильные треугольники.
Центры граней - точки пересечения медиан (высот, биссектрис).
Привяжем систему прямоугольных координат к вершине А и найдем координаты нужных нам для решения точек учитывая, что высота правильного треугольника равна h=(√3/2)*а, высота правильного тетраэдра равна H=√(2/3)*а, медианы в точке пересечения делятся в отношении 2/3, считая от вершины, <BAC=60° => <BAH=30°,
<YpAH = 60°. Тогда
А(0;0;0).
Q(a/2;(√3/6)а;0) - так как Хq = Xp = a/2, Yq = (2/3)*h*Cos60.
М(a/4;√3a/12;(√(2/3))*а/2) - так как Xm = Xq/2, Ym = Yq/2, Zm =H/2 - из подобия треугольников).
P(a/2;(√3/3)*а;(√(2/3))*а/2) - так как Xp=Xq, Yp=(2/3)*h, Zp=Zm.
N(2a/3 ;(2√3/9)a;√(2/3))*а/3)- так как Xn=Xq+(2/3)*(1/3)*h*Cos30, Yn=Yq+(2/3)*(1/3)*h*Cos60, Zn=(1/3)*H.
Примем а=1. Тогда
Вектор PQ{0;-√3/6; -(√(2/3)/2}. |PQ| = √(0+3/36+1/6) = 1/4.
Вектор MN{5/12;5√3/36; -(√(2/3)/6}.
|MN| = √(25/144+75/1296+1/54) = 324/1296 = 1/4.
Cosα = |(Xpq*Xmn+Ypq*Ymn+Zpq*Zmn)/(|PQ|*|MN|) или
Cosα = |(0-5/72+1/18)/((1/4)*1/4)| = |(-1/72)/(1/16)| = 2/9.
α ≈ 77,1°
Центр основания - точка О пересечения медиан треугольника основания.
В боковой грани SСB проведём апофему SД.
Тогда двугранный угол наклона боковой грани к основанию измеряется плоским углом SДО.
Расстояние от центра основания до боковой грани - это перпендикуляр ОК на апофему SД.
Высота пирамиды SО = Н = 2/sin(90°-60°) = 2/0,5 = 4 см.
Отрезок ОД = 2/sin60° = 2*2/√3 = 4/√3 см.
Медиана основания АД (она же и высота и биссектриса угла основания) равна трём отрезкам ОД по свойству медиан.
АД = 3*(4/√3) = 12/√3 = 4√3 см.
Сторона основания а = АД/cos30° = (4√3)/(√3/2) = 8 см.
Периметр основания Р = 3а = 3*8 = 24 см.
Апофема А = Н/sin60° = 4/(√3/2) = 8/√3 см.
Боковая поверхность пирамиды равна:
Sбок = (1/2)Р*А = (1/2)*24*(8/√3) = 96/√3 = 32√3 см².