70. Середня лінія прямокутної трапеції дорівнює 12 см, а її висота, проведена з вершини тупого кута, ділить основу
у відношенні 3:2, рахуючи від вершини прямого кута.
Знайдіть основи трапеції.
71. Бічна сторона рівнобічної трапеції дорівнює меншій ос-
нові, а її діагональ утворює з бічною стороною кут 23°.
Знайдіть кути трапеції.
Объяснение:
ЗАДАЧА 70
обозначим вершины трапеции А В С Д с высотой СН, с основаниями ВС и АД и средней линией КЕ.
СН делит основании АД:
обозначим эти пропорции как 3х и 2х. СН делит АД так, что АН=ВС=3х. Составим уравнение используя формулу нахождения средней линии трапеции:
4х=12
х=12÷4=3
тогда ВС=3×3=9см, АД=3х+2х=5х=5×3=15см
ОТВЕТ: ВС=9см, АД=15см
ЗАДАЧА 71
Обозначим вершины трапеции А В С Д с основаниями ВС и АД и диагональю АС. Рассмотрим ∆АВС. Если АВ=ВС, то ∆АВС - равнобедренный, поэтому <ВАС=<ВСА, а также <ВСА=<САД как внутренние разносторонние, поэтому диагональ АС является биссектрисой угла А, значит угол А=23×2=46°. Сумма углов трапеции прилегающих к одной боковой стороне составляют 180°, поэтому <В=<С=180–46=134°. Так как трапеция равнобедренная то <А=<Д=46°, <В=<С=134°
ОТВЕТ: 46°, 134°