Предположим призма образована точками A, B, C, D в основании, и соответствующими точками A1, B1, C1, D1 на вершине. Тогда диагональ призмы A1C равная, по условию 13 см, диагональ боковой грани A1B, по усл. равная 12 см, и отрезок BC образуют прямоугольный треугольник с гипотенузой A1C и катетами A1B и BC соответственно. Если из квадрата гипотенузы вычесть квадрат одного из катетов получим квадрат второго катета. 169-144=25. Квадрат катета BC=25. Соответственно длинна катета BC=5см. Эти же действия повторяем для треугольника A1AB. Длинна катета A1A, который является высотой призмы составила квадратный корень из прощения, отсутствует знак корня на клавиатуте). Тогда полная площадь призмы равна сумме произведения периметра основания (4*5=20см) на высоту (кв.корень из 119см) и площядей основания и вершины (2*4*5=40кв.см) ответ: Полная площадь призмы равна (40+20 квадратных корней из 119) кв.см.
1 Прямая | имеет с пересекающимися прямыми а и b две общие точки. третья точка - это точка пересечения прямых а и b итак есть ТРИ ТОЧКИ , через которые можно провести ТОЛЬКО ОДНУ плоскость. каждая прямая проходит через ДВЕ точки (из этих трех) если прямая проходит через ДВЕ точки плоскости, то она лежит в этой плоскости ДОКАЗАНО 2 если провести прямую через точку М в плоскости треугольника АВС, то она обязательно пересечет две стороны или даже три стороны, так как стороны треугольника НЕ параллельны если же прямая не лежит в плоскости треугольника, тогда возможно
Прямая | имеет с пересекающимися прямыми а и b две общие точки.
третья точка - это точка пересечения прямых а и b
итак есть ТРИ ТОЧКИ , через которые можно провести ТОЛЬКО ОДНУ плоскость.
каждая прямая проходит через ДВЕ точки (из этих трех)
если прямая проходит через ДВЕ точки плоскости, то она лежит в этой плоскости
ДОКАЗАНО
2
если провести прямую через точку М в плоскости треугольника АВС, то она обязательно пересечет две стороны или даже три стороны, так как стороны треугольника НЕ параллельны
если же прямая не лежит в плоскости треугольника, тогда возможно