6. цилиндр, радиус основания которого равен 6√3см, вписанный правильную треугольную призму. найдите площадь боковой поверхности призмы, если высота цилиндра равна 5 см.
7. высота конуса равна 15 см, а радиус его основания 12 см. на расстоянии 10 см от вершины конуса проведено сечение, параллельное основанию. найдите площадь этого сечения.
Если двугранные углы при ребрах основания равны (равны углы наклона боковых граней к плоскости основания), то высота пирамиды проецируется в центр окружности, вписанной в основание. В ромбе это точка пересечения диагоналей (точка О на рисунке).
Проведем ОН⊥CD. ОН - проекция наклонной SH на плоскость основания, тогда SH⊥CD по теореме о трех перпендикулярах. Значит
∠SHO = 60° - линейный угол двугранного угла при ребре основания.
Периметр ромба 40 см, значит длина одной стороны ромба
CD = Pabcd/4 = 10 см.
КН - высота ромба.
Sabcd = CD · KH
KH = Sabcd / CD = 60 / 10 = 6 см
ОН = 1/2 КН = 3 см.
ΔSOH: ∠SOH = 90°,
SO = OH · tg∠SOH = 3 · √3 = 3√3 см
Объем пирамиды:
V = 1/3 Sabcd · SO = 1/3 · 60 · 3√3 = 60√3 см³
Такие задачи следует описывать подробнее или давать их с рисунком.
--------------------
Высота ВН не может быть проведена к АD, т.к. АВ=6 < ВН ( наклонная не может быть меньше перпендикуляра из той же точки).
Следовательно, ВН проведена к СD.
ВН⊥CD, катет СD=АВ=6, гипотенуза ВС=10, и тогда в прямоугольном (египетском) треугольнике ВСD основание Н высоты ВН совпадает с вершиной D.
Площадь параллелограмма равна произведению высоты на сторону, к которой проведена.
S=BH•CD=8•6=48 см²
S=BK•AD=48
AD=BC=10 ⇒
BK=48:10 = 4,8 см