Дано : AO =OB =AB/2 ; CO =OD =CD/2. -------------------------------------- Док- ать AO < (AC + AD) /2
Концы отрезков являются вершинами параллелограмма. ( Соединяем точки (концы отрезков) A и С , A и D , B и С , B и D ). Действительно : ΔAOC = ΔBOD ( по первому признаку равенства треугольников) следовательно AC = BD и ∠OAC =∠OBD , но эти углы накрест лежащие , поэтому AC | | DB . И наконец из AC = BD и AC | | DB следует (⇒) четырехугольник AСBD является параллелограммом. Из ΔADB : AB < AD + DB ( неравенство треугольника) ; 2AO < AD +AC ; AO < ( AC+AD) / 2 . * * * что и требовалось доказать * * * см рисунок (приложения
Правильный тетраэдр - треугольная пирамида, все грани которой правильные треугольники.
Обозначим пирамиду МАВС, центры eё граней E,P,T.
Основание О высоты МО пирамиды - центр описанной (и вписанной) окружности равностороннего ∆ АВС.
а) Выразить m через h.
АО - радиус описанной окружности.
Формула R=m/√3
MO²=АМ²-АО²
h²=m²-m²/3
2m²=3h
m=h√(3/2)=(h√6)/2
б) Выразить n через m.
Центр правильного треугольника - точка пересечения его медиан. Медианы точкой пересечения делятся в отношении 2:1, считая от вершины. В таком же отношении делятся ребра пирамиды.
МТ:ТН=2:1, Mc:MC=2:3; ⇒ cb:CB=2:3
Центры граней лежат в плоскости, параллельной основанию АВС и образующей в сечении треугольник abc~АВС с коэффициентом подобия k=2/3. ab=bc=ac-=2/3m
Расстояния между центрами граней - стороны треугольника, образованного при соединении центров граней, ∆ abc~ ∆ РТЕ с k=1/2.
AO =OB =AB/2 ;
CO =OD =CD/2.
--------------------------------------
Док- ать AO < (AC + AD) /2
Концы отрезков являются вершинами параллелограмма.
( Соединяем точки (концы отрезков) A и С , A и D , B и С , B и D ).
Действительно :
ΔAOC = ΔBOD ( по первому признаку равенства треугольников)
следовательно AC = BD и ∠OAC =∠OBD , но эти углы накрест лежащие , поэтому AC | | DB . И наконец из AC = BD и AC | | DB следует (⇒)
четырехугольник AСBD является параллелограммом.
Из ΔADB :
AB < AD + DB ( неравенство треугольника) ;
2AO < AD +AC ;
AO < ( AC+AD) / 2 . * * * что и требовалось доказать * * *
см рисунок (приложения
Правильный тетраэдр - треугольная пирамида, все грани которой правильные треугольники.
Обозначим пирамиду МАВС, центры eё граней E,P,T.
Основание О высоты МО пирамиды - центр описанной (и вписанной) окружности равностороннего ∆ АВС.
а) Выразить m через h.
АО - радиус описанной окружности.
Формула R=m/√3
MO²=АМ²-АО²
h²=m²-m²/3
2m²=3h
m=h√(3/2)=(h√6)/2
б) Выразить n через m.
Центр правильного треугольника - точка пересечения его медиан. Медианы точкой пересечения делятся в отношении 2:1, считая от вершины. В таком же отношении делятся ребра пирамиды.
МТ:ТН=2:1, Mc:MC=2:3; ⇒ cb:CB=2:3
Центры граней лежат в плоскости, параллельной основанию АВС и образующей в сечении треугольник abc~АВС с коэффициентом подобия k=2/3. ab=bc=ac-=2/3m
Расстояния между центрами граней - стороны треугольника, образованного при соединении центров граней, ∆ abc~ ∆ РТЕ с k=1/2.
n=ab/2=1/2•(2/3)m
n=m/3.