Точка N может лежать по одну сторону от плоскости β с точкой М или по другую. Если N лежит по другую сторону, то невозможно выполнить условия MN = 6 см и при этом OM = 9 см. Поэтому рассматриваем только случай, когда M и N находятся по одну сторону от плоскости β.
В этом случае расстояние от M до плоскости (определяется перпендикуляром, опущенным на эту плоскость) равно PM=3см. А расстояние от N до плоскости - QN.
Рассмотрим тр-ки MPO и NQO. Они подобны (2 угла прямые, а ещё один угол MOP общий). Значит PM/QN=OM/ON. ON=9-6=3
Объяснение:
1)
Векторы параллельны друг другу, одинаковы по длине, но направлены в разные стороны, значит k = -1
Векторы параллельны друг другу, AC в два раза длиннее и направлены в разные стороны, значит m = -2
Векторы параллельны друг другу, QB1 в два раза короче и направлены в разные стороны, значит n = -0,5
2)
Векторы параллельны друг другу, A1C в два раза длиннее и направлены в одну сторону, значит k = 2
Векторы параллельны друг другу, одинаковы по длине, но направлены в разные стороны, значит m = -1
Векторы параллельны друг другу, BQ в два раза короче и направлены в разные стороны, значит n = -0,5
1см
Объяснение:
Точка N может лежать по одну сторону от плоскости β с точкой М или по другую. Если N лежит по другую сторону, то невозможно выполнить условия MN = 6 см и при этом OM = 9 см. Поэтому рассматриваем только случай, когда M и N находятся по одну сторону от плоскости β.
В этом случае расстояние от M до плоскости (определяется перпендикуляром, опущенным на эту плоскость) равно PM=3см. А расстояние от N до плоскости - QN.
Рассмотрим тр-ки MPO и NQO. Они подобны (2 угла прямые, а ещё один угол MOP общий). Значит PM/QN=OM/ON. ON=9-6=3
QN=PM*ON/OM=3*3/9=1