5. Відомо, що точка M — середина сторони AC трикутни- ка ABC. На промені ВМ поза трикутником відкладено відрізок ME, який дорівнює відрізку BM. Знайдіть ЕС, якщо AB = 4,2 см. А) 2,1 см; В) 4,8 см; Б) 4,2 см; Г) 8,4 см.
Расстояние от центра основания конуса до середины образующей является медианой ОК прямоугольного треугольника АВО, где ВО - высота конуса, АО - радиус основания, АВ- образующая.
Медиана прямоугольного треугольника, проведенная к гипотенузе, равна ее половине.
Следовательно, АВ=2•КО=10 см.
Отношение катета ВО к гипотенузе АВ равно 8:10=4:5, т.е. ∆ АВО египетский, следовательно,
радиус основания конуса АО=6 см ( можно проверить по т.Пифагора с тем же результатом).
1) а=12см, с=13см,
b= \sqrt{ c^{2}- a^{2} } =5cmb=
c
2
−a
2
=5cm sin \alpha = \frac{12}{13}sinα=
13
12
2) c=40cm \alpha =30*α=30∗ , следовательно а=1/2с=20см
b= \sqrt{ c^{2} - a^{2} } = \sqrt{ 40^{2}- 20^{2} } =20 \sqrt{3}b=
c
2
−a
2
=
40
2
−20
2
=20
3
3)\alpha =45α=45 b=4cm
\alpha =45α=45 следовательно \beta =45β=45 и а=в=4см , c= \sqrt{2 a^{2} } = \sqrt{32} =4 \sqrt{2}c=
2a
2
=
32
=4
2
4)\alpha =60α=60 \beta =30β=30 b=5cm, значит c=2в=10см,
a= \sqrt{ c^{2} - b^{2} } = \sqrt{ 10^{2} - 5^{2} } =5 \sqrt{3} cma=
c
2
−b
2
=
10
2
−5
2
=5
3
cm
4)c= 10 дм, b= 6 дм. a= \sqrt{ c^{2} - b^{2} } = \sqrt{ 10^{2} - 6^{2} } =8dma=
c
2
−b
2
=
10
2
−6
2
=8dm
sin \alpha =4/5sinα=4/5
Осевое сечение конуса- равнобедренный треугольник АВС.
Расстояние от центра основания конуса до середины образующей является медианой ОК прямоугольного треугольника АВО, где ВО - высота конуса, АО - радиус основания, АВ- образующая.
Медиана прямоугольного треугольника, проведенная к гипотенузе, равна ее половине.
Следовательно, АВ=2•КО=10 см.
Отношение катета ВО к гипотенузе АВ равно 8:10=4:5, т.е. ∆ АВО египетский, следовательно,
радиус основания конуса АО=6 см ( можно проверить по т.Пифагора с тем же результатом).