48. В равнобедренном треугольнике ABC длина основания AC равна 8, а расстояние от точки пересечения медиан до вершины В равно 2. Найдите периметр треугольника ABC.
26. в четырёхугольнике abcd диагонали пересекаются в точке о под углом α. точка f принадлежит отрезку ас. известно, что во = 19, do = 16, ас = 24. найдите af, если площадь треугольника fcd в три раза меньше площади четырёхугольника abcd.
решение.
площадь четырехугольника abcd можно найти по формуле:
по условию
(1)
площадь треугольника fdc также можно вычислить по формуле:
пусть fc=x, тогда af=24-x. рассмотрим треугольник dho, в котором do=16, , следовательно,. подставляем fc и dh в формулу площади треугольника fdc, имеем:
Сторона правильного треугольника — 10 см, углы по 60 градусов. Радиусом треугольника будет 2/3 от высоты этого треугольника (т. к в равностороннем треугольнике медианы/высоты/бессиктрисы совпадают, то точками пересечения они делятся в соотношении 2/1, считая от вершины) . Таким образом: R=2/3*a*sin(п/3). То есть 2/3*10*(корень из трёх пополам) или 10/корень из 3. Далее находим площадь круга: S=п*(R в квадрате) , потом делим площадь на 360 и умножаем на угол сектора (если в градусах) , а если сектор в радианах, то делим на 2п и так же умножаем
ответ:
объяснение:
26. в четырёхугольнике abcd диагонали пересекаются в точке о под углом α. точка f принадлежит отрезку ас. известно, что во = 19, do = 16, ас = 24. найдите af, если площадь треугольника fcd в три раза меньше площади четырёхугольника abcd.
решение.
площадь четырехугольника abcd можно найти по формуле:
по условию
(1)
площадь треугольника fdc также можно вычислить по формуле:
пусть fc=x, тогда af=24-x. рассмотрим треугольник dho, в котором do=16, , следовательно,. подставляем fc и dh в формулу площади треугольника fdc, имеем:
(2)
приравнивая (1) и (2), получаем уравнение:
следовательно, af=24-17,5 = 6,5
ответ: 6,5