4. В прямоугольном треугольнике ABC угол C = 90°, биссектриса АК в 2 раза больше расстояния от точки К до прямой AB. Гипотенуза АВ = 32 см. Найдите катет АС.
Пусть мы отметили 2 точки А и В, причём точка А стоит левее точки В (это не принципиально, просто надо для однозначности дальнейших рассуждений). Через точки А и В провели прямую (прямую АВ). Начало луча АВ в точке А, луч направлен в сторону точки В. Точка М принадлежит прямой АВ, разместить мы её можем только левее точки А, иначе точка М будет принадлежать лучу АВ, что противоречит условию. Известно, что через точку можну провести только одну прямую параллельную данной прямой. Поэтому через точку М мы можем провести одну прямую МА параллельно прямой АВ (они совпадут), соответственно она будет параллельна и лучу АВ. Но нас просят провести не прямую, а луч. Разница будет в том, что прямую МА можно разбить на два луча. Оба будут начинаться в точке М, только один пойдёт вдоль прямой АВ в сторону точки А, а второй в обратную. Итак, есть 2 искомых луча.
Четырехугольник, у которого противоположные стороны попарно параллельны (лежат на параллельных прямых) - параллелограмм. По условию АС и ВD, АВ и CD лежат на параллельных прямых. Следовательно, АВСD- параллелограмм. В параллелограмме противоположные стороны равны. ⇒ АС=ВD и АВ-СD.
Соединив А и D, получим треугольники АСD и ABD. В них накрестлежащие углы при пересечении параллельных прямых а и b секущей АD равны. Накрестлежащие углы при параллельных прямых АВ и CD секущей АD - равны. Сторона AD- общая. Треугольники АСD и ABD равны по второму признаку равенства треугольников. Их соответственные стороны равны. ⇒АВ=СD.
Точка М принадлежит прямой АВ, разместить мы её можем только левее точки А, иначе точка М будет принадлежать лучу АВ, что противоречит условию.
Известно, что через точку можну провести только одну прямую параллельную данной прямой. Поэтому через точку М мы можем провести одну прямую МА параллельно прямой АВ (они совпадут), соответственно она будет параллельна и лучу АВ. Но нас просят провести не прямую, а луч. Разница будет в том, что прямую МА можно разбить на два луча. Оба будут начинаться в точке М, только один пойдёт вдоль прямой АВ в сторону точки А, а второй в обратную.
Итак, есть 2 искомых луча.
По условию АС и ВD, АВ и CD лежат на параллельных прямых. Следовательно, АВСD- параллелограмм.
В параллелограмме противоположные стороны равны. ⇒
АС=ВD и АВ-СD.
Соединив А и D, получим треугольники АСD и ABD.
В них накрестлежащие углы при пересечении параллельных прямых а и b секущей АD равны.
Накрестлежащие углы при параллельных прямых АВ и CD секущей АD - равны.
Сторона AD- общая.
Треугольники АСD и ABD равны по второму признаку равенства треугольников. Их соответственные стороны равны.
⇒АВ=СD.