4) в правильном восьмиугольнике abcdefgh проведены диагонали ch и dg. докажите, что четырехугольник cdgh - прямоугольник, и выразите его стороны через сторону восьмиугольника.
Раз восьмиугольник правильный, значит все его стороны равны и все углы тоже. Угол такого восьмиугольника можно найти по формуле (где n - количество углов):
градусов, значит, каждый угол восьмиугольника равен 135 градусов. Рассмотрим четырёхугольник АВСН, в нём два угла по 135 градусов и два по х градусов (АВ параллельна СН так как точки А и В равноудалены от точек С и Н, это получилась равнобедренная трапеция). В выпуклом четырёхугольнике сумма углов равна 360 градусов, таким образом 2х=90 градусов, следовательно, х=45 градусов. Отсюда мы можем найти углы DСН и GНС, которые равны по 135-х=90 градусов. Аналогично углы СDG и DGН равны по 90 градусов, значит, CDGH - прямоугольник. Одна сторона этого прямоугольника равна стороне восьмиугольника, теперь найдём вторую. Для этого опустим в трапеции АВСН высоты и . . , потому что получился прямоугольник, а
градусов, значит, каждый угол восьмиугольника равен 135 градусов. Рассмотрим четырёхугольник АВСН, в нём два угла по 135 градусов и два по х градусов (АВ параллельна СН так как точки А и В равноудалены от точек С и Н, это получилась равнобедренная трапеция). В выпуклом четырёхугольнике сумма углов равна 360 градусов, таким образом 2х=90 градусов, следовательно, х=45 градусов. Отсюда мы можем найти углы DСН и GНС, которые равны по 135-х=90 градусов. Аналогично углы СDG и DGН равны по 90 градусов, значит, CDGH - прямоугольник. Одна сторона этого прямоугольника равна стороне восьмиугольника, теперь найдём вторую.
Для этого опустим в трапеции АВСН высоты и . . , потому что получился прямоугольник, а
Таким образом стороны прямоугольника равны АВ и