8. в прямоугольном треугольнике авс с=90° и а=30°, проведена медиана см и биссектриса md δсма. найдите md, если вс=23см.
дано: δавс, с=90°, а=30°, см-медиана с, мd – биссектриса δсма, вс=23см.найти: md.решение: т.к. см – медиана, то см-вм=ма=0,5авт.к. а=30° и вс=24см, то ав=46см и = см=вм=ма=23см.т.к. см=ма, то δсма равнобедренный, следовательно, мd – высота.т.к. а=30°, аdm= 90° и ма=23см, то md=0,5ма= 11,5см.ответ: md=11,5см.
Углы 1 и 2 соответственные, прямые с и d параллельны(на рис. черные прямые), прямая е секущая(на рис. серая прямая). Углы 1 и 2 соответственные по определению, и по свойству соответственных углов углы 1 и 2 равны. Биссектрисы a и b (на рис. синего цвета) делят углы 1 и 2 пополам, углы 3 и 4 - половинки углов 1 и 2 соответственно. Поскольку
углы 1 и 2 равны, то их половины 3 и 4 также равны.
А углы 3 и 4 являются соответственными при прямых a и b и секущей e.
Поэтому по признаку параллельности прямых (если соответственные углы равны, то прямые параллельные) прямые a и b параллельны, значит, биссектрисы соответственных углов параллельны.
7. один из углов прямоугольного треугольника равен 60°, а сумма гипотенузы и меньшего катета равна 18 см. найдите гипотенузу и меньший катет.
дано: δавс, с=90°, а=60°, ав+ас=18смнайти: ав, ас.решение: в=90° – 60°=30°, значит, ас – меньший катет, тогдаас=0,5авав+0,5ав=18ав=12см, ас=6смответ: ав=12см, ас=6см.8. в прямоугольном треугольнике авс с=90° и а=30°, проведена медиана см и биссектриса md δсма. найдите md, если вс=23см.
дано: δавс, с=90°, а=30°, см-медиана с, мd – биссектриса δсма, вс=23см.найти: md.решение: т.к. см – медиана, то см-вм=ма=0,5авт.к. а=30° и вс=24см, то ав=46см и = см=вм=ма=23см.т.к. см=ма, то δсма равнобедренный, следовательно, мd – высота.т.к. а=30°, аdm= 90° и ма=23см, то md=0,5ма= 11,5см.ответ: md=11,5см.параллельны
Объяснение:
Углы 1 и 2 соответственные, прямые с и d параллельны(на рис. черные прямые), прямая е секущая(на рис. серая прямая). Углы 1 и 2 соответственные по определению, и по свойству соответственных углов углы 1 и 2 равны. Биссектрисы a и b (на рис. синего цвета) делят углы 1 и 2 пополам, углы 3 и 4 - половинки углов 1 и 2 соответственно. Поскольку
углы 1 и 2 равны, то их половины 3 и 4 также равны.
А углы 3 и 4 являются соответственными при прямых a и b и секущей e.
Поэтому по признаку параллельности прямых (если соответственные углы равны, то прямые параллельные) прямые a и b параллельны, значит, биссектрисы соответственных углов параллельны.