Дано: ABC - равнобедренный треугольник; AB = BC = 13дм, АС = 10см. Найти: решение: У равнобедренного треугольника боковые стороны и углы при основания равны С вершины В проведём перпендикулярно к стороне основанию АС высоту ВК. Делит она сторону на отрезки: С прямоугольного треугольника ABK ( ∠AKB=90°): По т. Пифагора высота ВК равна:
Площадь равнобедренного треугольника равна произведению стороны основания на высоту делённое на 2
Синус угла - это отношение противолежащего катета к гипотенузе:
Косинус угла - это отношение прилежащего катета к гипотенузе:
Тангенс угла - это отношение противолежащего катета к прилежащему катету
Котангенс угла - это отношение прилежащего катета к противолежащему катету
1. Нарисуйте чертеж. 2. Угол между биссектрисой и высотой обозначьте за X. 3. Угол между высотой и ближней к ней стороной Δ - за Y. 4. Тогда угол между биссектрисой и ближней к ней стороной Δ будет = X+Y. 5. Выразите все остальные углы Δ: это легко, т.к. в данном Δ будут два прямоугольных Δ. 6. Вы получите, что два угла при других вершинах Δ будут = 90-Y и 90-2X-Y. Их разность будет = 2X. 7. Следовательно, угол между биссектрисой и высотой (мы его приняли за Х) равен полуразности углов при других двух вершинах (эта разность = 2Х).
Найти:
решение:
У равнобедренного треугольника боковые стороны и углы при основания равны
С вершины В проведём перпендикулярно к стороне основанию АС высоту ВК. Делит она сторону на отрезки:
С прямоугольного треугольника ABK ( ∠AKB=90°):
По т. Пифагора высота ВК равна:
Площадь равнобедренного треугольника равна произведению стороны основания на высоту делённое на 2
Синус угла - это отношение противолежащего катета к гипотенузе:
Косинус угла - это отношение прилежащего катета к гипотенузе:
Тангенс угла - это отношение противолежащего катета к прилежащему катету
Котангенс угла - это отношение прилежащего катета к противолежащему катету
2. Угол между биссектрисой и высотой обозначьте за X.
3. Угол между высотой и ближней к ней стороной Δ - за Y.
4. Тогда угол между биссектрисой и ближней к ней стороной Δ будет = X+Y.
5. Выразите все остальные углы Δ: это легко, т.к. в данном Δ будут два прямоугольных Δ.
6. Вы получите, что два угла при других вершинах Δ будут = 90-Y и 90-2X-Y. Их разность будет = 2X.
7. Следовательно, угол между биссектрисой и высотой (мы его приняли за Х) равен полуразности углов при других двух вершинах (эта разность = 2Х).