Ой, ну это легко!) В прямоугольном треугольнике есть такое свойство: Если в прямоугольном треугольнике есть угол в 30 градусов, то катет, лежащий напротив этого угла, равен половине гипотенузы этого треугольника. Также есть признак: Если в прямоугольном треугольнике катет равен половине гипотенузы, то напротив этого катета находится угол, равный 30 градусам! Доказательство: Дано: ∆ ABC, ∠C=90º, ∠A=30º. Доказать: ВС = 1/2АВ Доказательство: 1) Так как сумма острых углов прямоугольного треугольника равна 90º, то ∠B=90º-∠A=90º-30º=60º. 2) Проведем из вершины прямого угла медиану CF. 3) Так как медиана, проведенная к гипотенузе, равна половине гипотенузы, то CF = 1/2AB, то есть, CF=AF=BF. 4) Так как BF=CF, то треугольник BFC — равнобедренный с основанием BC. Следовательно, у него углы при основании равны: ∠B=∠BCF=60º. 5) Так как сумма углов треугольника равна 180º, то в треугольнике BFC ∠BFC =180º -(∠B+∠BCF)=60º. 6)Поскольку все углы треугольника BFC равны, то этот треугольник — равносторонний. Значит, все его стороны равны и BC=CF=BF=1/2AB. ч.т.д
Во вложении рисунок: O - центр описанной окружности около треугольника АВС L - центр окружности, вписанной в треугольник АВС BH - высота Дано: АВС - равнобедренный треугольник (АВ=ВС) ВН - высота, ВН = 9 АС = 24 Найти: R и r Решение: BH - это высота, биссектриса и медиана, т.к. В равнобедренном треугольнике медиана, биссектриса и высота, проведенные к основанию, совпадают. AH=HC=12 По Теореме Пифагора:
Есть такое свойство: Если в многоугольник можно вписать окружность, то его площадь равна произведению полупериметра многоугольника на радиус этой окружности: S = pr P = 54, p = 27 S = 27r Есть еще одна формула:
S = 108 108 = 27r r = 4 Найдем R: Есть еще одна формула для нахождения площади треугольника:
S = 108 108 = 432R = 5400 R = 12,5 ответ: r = 4, R = 12, 5
В прямоугольном треугольнике есть такое свойство: Если в прямоугольном треугольнике есть угол в 30 градусов, то катет, лежащий напротив этого угла, равен половине гипотенузы этого треугольника. Также есть признак: Если в прямоугольном треугольнике катет равен половине гипотенузы, то напротив этого катета находится угол, равный 30 градусам! Доказательство: Дано: ∆ ABC, ∠C=90º, ∠A=30º. Доказать: ВС = 1/2АВ Доказательство: 1) Так как сумма острых углов прямоугольного треугольника равна 90º, то ∠B=90º-∠A=90º-30º=60º. 2) Проведем из вершины прямого угла медиану CF. 3) Так как медиана, проведенная к гипотенузе, равна половине гипотенузы, то CF = 1/2AB, то есть, CF=AF=BF. 4) Так как BF=CF, то треугольник BFC — равнобедренный с основанием BC. Следовательно, у него углы при основании равны: ∠B=∠BCF=60º. 5) Так как сумма углов треугольника равна 180º, то в треугольнике BFC ∠BFC =180º -(∠B+∠BCF)=60º. 6)Поскольку все углы треугольника BFC равны, то этот треугольник — равносторонний. Значит, все его стороны равны и BC=CF=BF=1/2AB. ч.т.д
O - центр описанной окружности около треугольника АВС
L - центр окружности, вписанной в треугольник АВС
BH - высота
Дано:
АВС - равнобедренный треугольник (АВ=ВС)
ВН - высота, ВН = 9
АС = 24
Найти: R и r
Решение:
BH - это высота, биссектриса и медиана, т.к. В равнобедренном треугольнике медиана, биссектриса и высота, проведенные к основанию, совпадают.
AH=HC=12
По Теореме Пифагора:
Есть такое свойство:
Если в многоугольник можно вписать окружность, то его площадь равна произведению полупериметра многоугольника на радиус этой окружности:
S = pr
P = 54, p = 27
S = 27r
Есть еще одна формула:
S = 108
108 = 27r
r = 4
Найдем R:
Есть еще одна формула для нахождения площади треугольника:
S = 108
108 =
432R = 5400
R = 12,5
ответ: r = 4, R = 12, 5