Треугольни МНК, медианы при пересечении делятся в отношении 2:1 начиная от вершины, , т. е. всего 3 части, МО=4,5*2/3=3, ОМ1=4,5*1/3=1,5, КО=6*2/3=4, ОК1=6*1/3=2, медиана делит треугольник на два равновеликих треугольника, площадь МК1К=площадьКК1Н (для медианы КК1)=1/2площади МНК=9/2=4,5, или для медианы ММ1-площадь ММ1К=площадьММ1Н=1/2площадь МНК=9/2=4,5, треугольник МКК1 - площадь=4,5, КК1=6, проводим высоту МТ на продолжение КК1, площадь МКК1= 1/2*КК1*МТ, 2*площадь=КК1*МТ, 9=6*МТ, МТ=1,5, МТ являектся высотой для треугольника МОК1, площадь МОК1=1/2*ОК1*МТ=1/2*2*1,5=1,5, площадь МОК=площадьМКК1-площадьМОК1=4,5-1,5=3, площадь МОК=1/2*МО*КО*sin углаМОК, 3=1/2*3*4*sin углаМОК, sin углаМОК =1/2, что соответствует углу 150 или 30, угол=150, потому что можно чуть по другому решить треугольник МОТ прямоугольный, МО=3 - гипотенуза, МТ=1,5 - катет =1/2 гипотенузы, значит угол МОК1=30, уголМОК=180-30=150
Даны точки А(-1;2), В(2;-1), С(5;3).
Вектор АВ = ((2-(-1)); (-1-2)) = (3; -3), модуль равен √(9+9) = √18 = 3√2.
Вектор АС = ((5-(-1); (3-2)) = (6; 1), модуль равен √(36+1) = √37.
cos a = (3*6 + (-3)*1) / (3√2*√37) = 15/(3√74) ≈ 0,58124.
Угол А = 54,46223°.
Угол В аналогично.
Вектор ВА -3 3 модуль 3√2
Вектор ВС 3 4 модуль 5
cos b = (-3*3 + 3*4) / (3√2*5) = 3/(15√2) ≈ 0,14142.
Угол B = 81,87°.
Площадь треугольника равна половине модуля векторного произведения.
Находим векторное произведение.
i j k| i j
AB 3 -3 0| 3 -3
AC 6 1 0| 6 1 = 0i + 0j + 3 k -0j - 0i + 18k = 21k.
S = (1/2)*21 = 10,5 кв.ед.