4. ( ) Є два розчини, перший з яких містить 10% соляної кислоти, а другий 30% соляної кислоти. Скільки грамів кожного розчину треба взяти, щоб отримати 600 г розчину, який містить 15% соляної кислоти?
Пусть в треугольнике ABC проведены высота CH и медиана CM, при этом углы ACH, HCM, MCB равны (см. рисунок). В треугольнике ACM высота CH является также биссектрисой. Тогда треугольник равнобедренный с основанием AM. Обозначим сторону AB за 4x, тогда AM=MB=2x. Так как ACM равнобедренный, то CH также является медианой, тогда AH=HM=x.
Теперь рассмотрим прямоугольный треугольник BCH. Биссектриса CM делит его сторону BH вотношении 1:2. Тогда стороны CH и CB тоже относятся как 1:2 (MH/MB=CH/CB). То есть CH/BC=1/2. Если катет прямоугольного треугольника в 2 раза меньше гипотенузы, то угол, лежащий против этого катета, равен 30 градусам. Тогда угол HBC равен 30 градусам, а угол HCB равен 60 градусам. Если 2/3 угла C исходного треугольника равны 60 градусам, то угол C равен 90 градусам. Тогда треугольник прямоугольный, что и требовалось доказать.
Если чертёж сделал, то вот решение: ВС=8+4=12см, ВС = АD = 12 см(так как противоположные стороны параллелограма равны). Рассмотрим треугольник АВЕ. угол ВАЕ и угол ЕАD равны, так как АЕ - биссектриса. угол ЕАD= углу АЕB(как накрест лежащие при прямых ВС параллельно АD и секущей AE) Объединяешь выше написанные равенства и получаешь , что угол BAE= BEA, значит треугольник АВС-равнобедренный, так как углы при основании равны), поэтому АВ=ВЕ=8см. Тогда АВ=СD=8см(свойство1 параллелограмма) ответ:8см;12см;8см;12см.
Теперь рассмотрим прямоугольный треугольник BCH. Биссектриса CM делит его сторону BH вотношении 1:2. Тогда стороны CH и CB тоже относятся как 1:2 (MH/MB=CH/CB). То есть CH/BC=1/2. Если катет прямоугольного треугольника в 2 раза меньше гипотенузы, то угол, лежащий против этого катета, равен 30 градусам. Тогда угол HBC равен 30 градусам, а угол HCB равен 60 градусам. Если 2/3 угла C исходного треугольника равны 60 градусам, то угол C равен 90 градусам. Тогда треугольник прямоугольный, что и требовалось доказать.
Рассмотрим треугольник АВЕ.
угол ВАЕ и угол ЕАD равны, так как АЕ - биссектриса.
угол ЕАD= углу АЕB(как накрест лежащие при прямых ВС параллельно АD и секущей AE)
Объединяешь выше написанные равенства и получаешь , что угол BAE= BEA, значит треугольник АВС-равнобедренный, так как углы при основании равны), поэтому АВ=ВЕ=8см.
Тогда АВ=СD=8см(свойство1 параллелограмма)
ответ:8см;12см;8см;12см.