Эта плоскость должна быть перпендикулярна отрезку FB и проходить через его середину.
Находим координаты точки М как середины отрезка FB.
F (-1 ; 3 ; -2), B (3 ; 1 ; -4) Точка М(1; 2; -3).
Направляющий вектор n отрезка FB является нормальным вектором искомой плоскости. То есть, координаты вектора FB будут коэффициентами А, В и С в общем уравнении плоскости.
F (-1 ; 3 ; -2), B (3 ; 1 ; -4) n = (4; -2; -2).
Для составления уравнения плоскости используем формулу:
nx(x - xA) + ny(y - yB) + nz(z - zC) = 0
Подставим данные и упростим выражение:
4 x - 1 + (-2) y - 2 + (-2) z - (-3) = 0
4x - 2y - 2z - 6 = 0 после сокращения на 2, получаем:
1) Как называется утверждение которое нельзя доказать?
Аксиома.
2) Из теоремы "Если две параллельные прямые пересечены секущей, то накрест лежащие углы равны" составьте обратную.
Меняем "если" и "то" местами: Если при пересечении двух прямых секущей накрест лежащие углы равны, то прямые параллельны.
3) Как называются прямые на плоскости, не имеющие общих точек?
Параллельными.
4) Если прямая a параллельна прямой b, и прямая а параллельна прямой с, то что можно сказать о прямых b и c?
Тогда b║c.
5) Изобразите: две параллельные прямые пересеченные секущей, отметьте числами 5 и 6 углы, которые являются односторонними.
См. рисунок.
6) О равенстве каких углов можно утверждать, если параллельные прямые пересечены секущей.
Тогда равны накрест лежащие углы: ∠1 = ∠7, ∠4 = ∠6
и равны соответственные углы: ∠1 = ∠5, ∠2 = ∠6, ∠3 = ∠7, ∠4 = ∠8.
Эта плоскость должна быть перпендикулярна отрезку FB и проходить через его середину.
Находим координаты точки М как середины отрезка FB.
F (-1 ; 3 ; -2), B (3 ; 1 ; -4) Точка М(1; 2; -3).
Направляющий вектор n отрезка FB является нормальным вектором искомой плоскости. То есть, координаты вектора FB будут коэффициентами А, В и С в общем уравнении плоскости.
F (-1 ; 3 ; -2), B (3 ; 1 ; -4) n = (4; -2; -2).
Для составления уравнения плоскости используем формулу:
nx(x - xA) + ny(y - yB) + nz(z - zC) = 0
Подставим данные и упростим выражение:
4 x - 1 + (-2) y - 2 + (-2) z - (-3) = 0
4x - 2y - 2z - 6 = 0 после сокращения на 2, получаем:
2x - y - z - 3 = 0.